1 research outputs found
Learning a Structured Neural Network Policy for a Hopping Task
In this work we present a method for learning a reactive policy for a simple
dynamic locomotion task involving hard impact and switching contacts where we
assume the contact location and contact timing to be unknown. To learn such a
policy, we use optimal control to optimize a local controller for a fixed
environment and contacts. We learn the contact-rich dynamics for our
underactuated systems along these trajectories in a sample efficient manner. We
use the optimized policies to learn the reactive policy in form of a neural
network. Using a new neural network architecture, we are able to preserve more
information from the local policy and make its output interpretable in the
sense that its output in terms of desired trajectories, feedforward commands
and gains can be interpreted. Extensive simulations demonstrate the robustness
of the approach to changing environments, outperforming a model-free gradient
policy based methods on the same tasks in simulation. Finally, we show that the
learned policy can be robustly transferred on a real robot.Comment: IEEE Robotics and Automation Letters 201