23 research outputs found

    Structural characterization of the Pet c 1.0201 PR-10 protein isolated from roots of Petroselinum crispum (Mill.) Fuss

    Get PDF
    The native dimeric Petroselinum crispum (Mill.) Fuss protein Pet c 1.0201 and a monomeric xyloglucan endotransglycosylase enzyme (Garajova et al., 2008) isolated from the root cells co-purify and share similar molecular masses and acidic isoelectric points. In this work, we determined the complete primary structure of the parsley Pet c 1.0201 protein, based on tryptic and chymotryptic peptides followed by the manual micro-gradient chromatographic separation coupled with offline MALDI-TOF/TOF mass spectrometry. The bioinformatics approach enabled us to include the parsley protein into the PR-10 family, as it exhibited the highest protein sequence identity with the Apium graveolens Api g 1.0201 allergen and the major Daucus carota allergen Dau c 1.0201. Hence, we designated the Petroselinum crispum protein as Pet c 1.0201 and deposited it in the UniProt Knowledgebase under the accession C0HKF5. 3D protein homology modelling and molecular dynamics simulations of the Pet c 1.0201 dimer confirmed the typical structure of the Bet v 1 family allergens, and the potential of the Pet c 1.0201 protein to dimerize in water. However, the behavioural properties of Pet c 1.0201 and the celery allergen Api g 1.0101 differed in the presence of salts due to transiently and stably formed dimeric forms of Pet c 1.0201 and Api g 1.0101, respectively.Barbora Stratilová, Pavel Řehulka, Soňa Garajová, Helena Řehulková, Eva Stratilová, Maria Hrmova, Stanislav Kozmo

    Another building block in the plant cell wall: Barley xyloglucan xyloglucosyl transferases link covalently xyloglucan and anionic oligosaccharides derived from pectin

    Get PDF
    Published online 16 August 2020.We report on the homo‐ and hetero‐transglycosylation activities of the HvXET3 and HvXET4 xyloglucan xyloglucosyl transferases (XET; EC 2.4.1.207) from barley (Hordeum vulgare L.), and the visualisation of these activities in young barley roots using Alexa Fluor 488‐labelled oligosaccharides. We discover that these isozymes catalyse the transglycosylation reactions with the chemically defined donor and acceptor substrates, specifically with the xyloglucan donor and the penta‐galacturonide [α(1‐4)GalAp]5 acceptor – the homogalacturonan (pectin) fragment. This activity is supported by 3D molecular models of HvXET3 and HvXET4 with the docked XXXG donor and [α(1‐4)GalAp]5 acceptor substrates at the ‐4 to +5 subsites in the active sites. Comparative sequence analyses of barley isoforms and seed‐localised TmXET6.3 from nasturtium (Tropaeolum majus L.) permitted the engineering of mutants of TmXET6.3 that could catalyse the hetero‐transglycosylation reaction with the xyloglucan/[α(1‐4)GalAp]5 substrate pair, while wild‐type TmXET6.3 lacked this activity. Expression data obtained by real‐time quantitative PCR of HvXET transcripts and a clustered heatmap of expression profiles of the gene family revealed that HvXET3 and HvXET6 co‐expressed but did not share the monophyletic origin. Conversely, HvXET3 and HvXET4 shared this relationship, when we examined the evolutionary history of 419 glycoside hydrolase 16 family members, spanning monocots, eudicots, and a basal Angiosperm. The discovered hetero‐transglycosylation activity in HvXET3 and HvXET4 with the xyloglucan/[α(1‐4)GalAp]5 substrate pair is discussed against the background of roles of xyloglucan‐pectin heteropolymers and how they may participate in spatial patterns of cell wall formation and re‐modelling, and affect the structural features of walls.Barbora Stratilová, Sergej Šesták, Jozef Mravec, Soňa Garajová, Zuzana Pakanová, Kristína Vadinová, Danica Kučerová, Stanislav Kozmon, Julian G. Schwerdt, Neil Shirley Eva Stratilová and Maria Hrmov

    Stepwise Catalytic Mechanism via Short-Lived Intermediate Inferred from Combined QM/MM MERP and PES Calculations on Retaining Glycosyltransferase ppGalNAcT2

    Get PDF
    The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals

    Definition of the acceptor substrate binding specificity in plant xyloglucan endotransglycosylases using computational chemistry

    Get PDF
    Published: 5 October 2022Xyloglucan endotransglycosylases (XETs) play key roles in the remodelling and reconstruction of plant cell walls. These enzymes catalyse homo-transglycosylation reactions with xyloglu-can-derived donor and acceptor substrates and hetero-transglycosylation reactions with a variety of structurally diverse polysaccharides. In this work, we describe the basis of acceptor substrate binding specificity in non-specific Tropaeolum majus (TmXET6.3) and specific Populus tremula x tremuloides (PttXET16A) XETs, using molecular docking and molecular dynamics (MD) simula-tions combined with binding free energy calculations. The data indicate that the enzyme-donor (xyloglucan heptaoligosaccharide or XG-OS7)/acceptor complexes with the linear acceptors, where a backbone consisted of glucose (Glc) moieties linked via (1,4)- or (1,3)-β-glycosidic linkag-es, were bound stably in the active sites of TmXET6.3 and PttXET16A. Conversely, the acceptors with the (1,6)-β-linked Glc moieties were bound stably in TmXET6.3 but not in PttXET16A. When in the (1,4)-β-linked Glc containing acceptors, the saccharide moieties were replaced with man-nose or xylose, they bound stably in TmXET6.3 but lacked stability in PttXET16A. MD simulations of the XET-donor/acceptor complexes with acceptors derived from (1,4;1,3)-β-glucans highlighted the importance of (1,3)-β-glycosidic linkages and side chain positions in the acceptor substrates. Our findings explain the differences in acceptor binding specificity between non-specific and spe-cific XETs and associate theoretical to experimental data.Barbora Stratilová, Eva Stratilová, Maria Hrmova and Stanislav Kozmo

    Glycoside hydrolase family 16-Xyloglucan:xyloglucosyl transferases and their roles in plant cell wall structure and mechanics

    No full text
    Plant xyloglucan:xyloglucosyl transferases also known as xyloglucan endo-transglycosylases (XETs) are classified in the glycoside hydrolase family 16. This family includes enzymes with a β-jelly-roll fold, which underlies their broad substrate specificity, and the catalytic function to mediate transglycosylation reactions with xyloglucan (XG)-derived or other substrates. This relaxed substrate specificity stems from structural plasticity and plays a fundamental role in plant cell wall re-modeling and mechanics that have evolved to operate in various monophyletic groups. XET enzymes occur in gene families that underlie the synthesis of functional proteins in time- and space-dependent means, and during plant development stresses caused by biotic and ecological stimuli. In this chapter, we focus on XETs and how their singularly carbohydrate-based enzymatic function underlies linking the diverse and complex structures of plant cell walls. We conclude that broad substrate non-specific XETs are plant-prevalent and that these enzymes play roles in targeted cell wall modifications.Barbora Stratilova, Stanislav Kozmon, Eva Stratilova,, Maria Hrmov

    Engineering of substrate specificity in a plant cell-wall modifying enzyme through alterations of carboxyl-terminal amino acid residues

    Get PDF
    First published: 02 September 2023. OnlinePublStructural determinants of substrate recognition remain inadequately defined in broad specific cell-wall modifying enzymes, termed xyloglucan xyloglucosyl transferases (XETs). Here, we investigate the Tropaeolum majus seed TmXET6.3 isoform, a member of the GH16_20 subfamily of the GH16 network. This enzyme recognises xyloglucan (XG)-derived donors and acceptors, and a wide spectrum of other chiefly saccharide substrates, although it lacks the activity with homogalacturonan (pectin) fragments. We focus on defining the functionality of carboxyl-terminal residues in TmXET6.3, which extend acceptor binding regions in the GH16_20 subfamily but are absent in the related GH16_21 subfamily. Site-directed mutagenesis using double to quintuple mutants in the carboxyl-terminal region – substitutions emulated on barley XETs recognising the XG/penta-galacturonide acceptor substrate pair – demonstrated that this activity could be gained in TmXET6.3. We demonstrate the roles of semi-conserved Arg238 and Lys237 residues, introducing a net positive charge in the carboxyl-terminal region (which complements a negative charge of the acidic pentagalacturonide) for the transfer of xyloglucan fragments. Experimental data, supported by molecular modelling of TmXET6.3 with the XG oligosaccharide donor and penta-galacturonide acceptor substrates, indicated that they could be accommodated in the active site. Our findings support the conclusion on the significance of positively charged residues at the carboxyl terminus of TmXET6.3 and suggest that a broad specificity could be engineered via modifications of an acceptor binding site. The definition of substrate specificity in XETs should prove invaluable for defining the structure, dynamics, and function of plant cell walls, and their metabolism; these data could be applicable in various biotechnologies.Barbora Stratilová, Sergej Šesták, Eva Stratilová, Kristína Vadinová, Stanislav Kozmon and Maria Hrmov

    Influence of Trp flipping on carbohydrate binding in lectins. An example on Aleuria aurantia lectin AAL

    No full text
    Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another
    corecore