143 research outputs found

    Study of helium swelling in nitride ceramics at different irradiation temperatures

    Get PDF
    This paper presents the results of a systematic study of helium swelling and the subsequent process of degradation of the near-surface layer of aluminum-based nitride ceramics. The samples were irradiated with 40 keV He2+ ions at temperatures of 300 and 1000 K with a fluence of 1 × 1017-5 × 1017 ions/cm2. The choice of radiation doses and temperature conditions was due to the possibility of simulating reactor tests of structural materials. It has been established that an increase in the irradiation fluence leads to the formation of large agglomerates of clusters of helium bubbles, as well as an increase in the degree of roughness and waviness of the surface with the formation of crater-like inclusions. In the case of irradiation at high temperatures, there was a slight decrease in the average size of helium inclusions compared with irradiation at room temperature. However, the density of inclusions and surface roughness were much higher. It is established that irradiation at room temperatures leads to a sharp decrease in ceramics density, as well as deformation of the crystal structure due to an increase in the density of dislocations and macrostresses in the structure. The decrease in ceramics density due to the formation of helium inclusions led to an increase in porosity and a defective fraction in the structure of the surface layer of ceramics. © 2019 by the authors

    Synthesis of Cu/CuO nanostructures obtained by electrochemical deposition

    Get PDF
    Unique physical-chemical properties of nanostructured materials are explained by the crystal structure, geometry and conductive properties that can be controlled by changing the synthesis conditions of nanostructures. In turn, the process of electrochemical deposition makes it possible to control the formation of nanostructures and their physical-chemical properties with high accuracy. Electrochemical synthesis in tracks of the template was carried out in potentiostatic mode at a voltage of 0.5 to 1.5 V. The electrolyte temperature was 25, 35, 50 °C. The composition of the electrolyte solution: CuSO4·5H2O (238g/l), H2SO4 (21g/l). The yield of copper by current from the sulfuric acid solutions of electrolytes is 100%. The growth of nanostructures was monitored by the chronoamperometry method with the "Agilent 34410A" multimeter. Since the template PET matrices are dielectric, a layer of gold with a thickness of no more than 10 nm, which is further a working electrode (cathode) during electrochemical deposition, was deposited to create a conductive layer by magnetron sputtering in a vacuum. By controlling the deposition time, the difference in the applied potentials, the electrolyte temperature, we can change the geometric parameters of synthesized nanostructures. All possible reactions associated with the synthesis process are listed below

    Phase transformations and photocatalytic activity of nanostructured Y2O3/TiO2-Y2TiO5 ceramic such as doped with carbon nanotubes

    Get PDF
    This work is devoted to the study of phase transition processes in nanostructured ceramics of the Y2O3/TiO2-Y2TiO5 type doped with carbon nanotubes as a result of thermal annealing, as well as to the assessment of the prospects of the effect of phase composition on photocatalytic activity. By the method of X-ray phase analysis, it was found that an increase in the annealing temperature leads to the formation of the orthorhombic phase Y2TiO5, as well as structural ordering. Based on the obtained UV spectra, the band gap was calculated, which varies from 2.9 eV (initial sample) to 2.1 eV (annealed at a temperature of 1000 ◦C). During photocatalytic tests, it was established that the synthesized nanostructured ceramics Y2O3/TiO2-Y2TiO5 doped CNTs show a fairly good photocatalytic activity in the range of 60–90% decomposition of methyl orange. © 2020 by the authors.Ministry of Education and Science of the Republic of Kazakhstan: BR05235921This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan (grant BR05235921)

    Induced spirals in polyethylene terephthalate films irradiated with ar ions with an energy of 70 MeV

    Get PDF
    This paper presents the results of a study of the ordering in polyethylene terephthalate (PET) film induced by Ar8+ ions with an irradiation fluence of 2 × 1012 ions/cm2, and of the temporal stability of the induced ordering in the irradiated sample, over a three month period. Immediately after irradiation, sharp new reflections not seen at lower fluences were observed in X-ray diffraction patterns, with angular positions of 2 θ = 9–10° and 19° and variable azimuthal intensities. X-ray reflections, previously observed at lower fluences, were also seen: at 2 θ = 26° and 23°, associated with PET crystallites, and at 2 θ = 5–12°, associated with induced ordering in the amorphous zone. Aging of the irradiated sample led to significant growth of the ordering region in the amorphous zone for angles up to 2 θ < 15°, as well as to dissipation and blurring of the new diffraction reflections at 2 θ = 9–10° and 2 θ = 19° and the formation of a new diffraction ring reflection in the range 2 θ = 11–16°. The azimuthal distribution of diffraction reflection intensities immediately after irradiation displays a clear oblique cross located predominantly along lines at angles of π/4 with respect to the direction of the texture of the PET film, indicating the formation of spiral structures based on the molecular strands of PET. Our experimental results lead us to conclude that the formation of coherent scattering areas in the amorphous region at 2 θ < 15° is due to intra-chain rotations of benzene-carboxyl subunits of repeat units of the PET chain molecules interacting with the residual electric field of a single latent track; whereas the formation of spiral structures is due to the inter-chain interaction of these preordered asymmetric subunits under the influence of the electric fields from overlapping latent tracks. © 2020 by the authors

    Synthesis and properties of Ferrite-based nanoparticles

    Get PDF
    The work is dedicated to the study of the structural and optical characteristics, as well as the phase transformations, of ferrite nanoparticles of CeO2-Fe2 O3 . To characterize the results obtained, the methods of scanning and transmission microscopy, X-ray diffraction (XRD) spectroscopy, and Mössbauer spectroscopy were applied. It was found that the initial nanoparticles are polycrystalline structures based on cerium oxide with the presence of X-ray amorphous inclusions in the structure, which are characteristic of iron oxide. The study determined the dynamics of phase and structural transformations, as well as the appearance of a magnetic texture depending on the annealing temperature. According to the Mossbauer spectroscopy data, it has been established that a rise in the annealing temperature gives rise to an ordering of the magnetic properties and a decrease in the concentration of cationic and vacancy defects in the structure. During the life test of synthesized nanoparticles as cathode materials for lithium-ion batteries, the dependences of the cathode lifetime on the phase composition of nanoparticles were established. It is established that the appearance of a magnetic component in the structure result in a growth in the resource lifetime and the number of operating cycles. The results show the prospects of using these nanoparticles as the basis for lithium-ion batteries, and the simplicity of synthesis and the ability to control phase transformations opens up the possibility of scalable production of these nanoparticles for cathode materials. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Study of the applicability of fe nanotubes as an anode material of lithium-ion batteries

    Full text link
    The paper presents the results of the use of iron nanotubes as the anode material of lithiumion batteries. To assess the degradation of the morphology of nanostructures after different numbers of cycles of life tests, the method of scanning electron microscopy, Mossbauer spectroscopy, and X-ray diffraction analysis were applied. It is shown that the decrease in discharge capacity starts at the 380th cycle and is caused by the onset of degradation processes of nanostructures due to the formation of amorphous inclusions and an increase in macrostresses and distortions in the structure. The complete degradation of the structure is observed after the 492nd life cycle test. According to the data obtained by Mossbauer spectroscopy, it has been established that an increase in life cycles leads to an increase in contribution of partial spectrum characteristic of a paramagnetic state. That indicates an increase in degradation rate of nanostructures and an increase in the content of impurity inclusions and amorphous formations in the crystal structure. © 2019, Electromagnetics Academy. All rights reserved

    Ion charge influence on the molecular structure of polyethylene terephthalate films after irradiation with swift heavy ions

    Get PDF
    We report here experimental results investigating the influence of the initial swift heavy ion charge on the structure of polyethylene terephthalate (PET) film after irradiation, using a structurally sensitive X-ray diffraction method. Kr ions with an energy of 100 MeV and charges of 13+, 14+, and 15+ were each used at irradiation fluences of 5 × 1010, 7.5 × 1010, 1 × 1011, 2.5 × 1011 and 5 × 1011 ions/cm2 . At constant energy and irradiation fluence, the post-irradiation structural changes in PET film show a clear dependence on the initial ion charge. As either the fluence or ion charge increase, the latent tracks begin to overlap, leading to cross-linking of PET chain molecules to form rotational isomers (rotamers). We use the fluence corresponding to the onset of overlapping to estimate the size of latent tracks for different ion charges. At the highest fluences, the latent tracks become entirely overlapped, and the interchain cross-linking extends throughout the whole film. Since this cross-linking is due to the dipole–dipole interaction of subunits of repeat units of PET chain molecules, it is reversible, in contrast to the well-known chemical cross-linking of polymer chain molecules under irradiation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Study of Phase Transformations in Ferroelectrics Based on Calcium Titanate

    Full text link
    The aim of this work is to study phase transformations kinetics in ferroelectrics based on calcium titanate. The relevance of this study is in the assessment of new methods for obtaining complex phase composition ferroelectrics, which have the potential for application in microelectronics, photocatalysis, and power engineering. The methods of scanning electron microscopy and X-ray diffraction were used as the main methods of analysis. Analysis of morphological features made it possible to establish the kinetics of changes not only in grain sizes, but also in their geometry. During the studies of phase transformations, the following dependence of the TiO2 - anatase/CaTi2O4 → TiO2- anatase /CaTi2O4/CaTiO3 → CaTiO3/TiO2 - rutile type was established depending on the annealing temperature. At the same time, at a temperature of 1000°C, a stable structure of ceramic with a perovskite-like structure of the CaTiO3 type and a high structural ordering degree (more than 92%) is formed. © 2021 E.A.Buketov Karaganda State. University Publish House. All rights reserved.This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (No. AP09259182)

    Investigation of the structural changes and catalytic properties of feni nanostructures as a result of exposure to gamma radiation

    Get PDF
    The paper presents the results of changes in the structural characteristics, and the degree of texturing of FeNi nanostructures close in composition to permalloy compounds as a result of directed modification by gamma radiation with an energy of 1.35 MeV and doses from 100 to 500 kGy. The choices of energy and radiation doses were due to the need to modify the structural properties, which consisted of annealing the point defects that occurred during the synthesis along the entire length of the nanotubes. The initial FeNi nanostructures were polycrystalline nanotubes of anisotropic crystallite orientation, obtained by electrochemical deposition. The study found that exposure to gamma rays led to fewer defects in the structure, and reorientation of crystallites, and at doses above 300 kGy, the presence of one selected texture direction (111) in the structure. During tests of the corrosion resistance of synthesized and modified nanostructures in a PBS solution at various temperatures, it was found that exposure to gamma rays led to a significant decrease in the rate of degradation of nanotubes and an increase in the potential life of up to 20 days. It was established that at the first stage of testing, the degradation of nanostructures is accompanied by the formation of oxide inclusions, which subsequently lead to the formation of pitting corrosion and subsequent partial or complete destruction of the nanostructures. It is shown that gamma radiation is promising not only for targeted modification of nanostructures and increasing resistance to degradation, but also for increasing the rate of catalytic reactions of the PNA-PPD type. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Ministry of Education and Science of the Republic of KazakhstanFunding: This study was funded by the Ministry of Education and Science of the Republic of Kazakhstan (grant AP05133578)

    Study of Corrosion Resistance and Degradation Mechanisms in LiTiO2-Li2TiO3 Ceramic

    Full text link
    The interest in lithium-containing ceramics is due to their huge potential as blanket materials for thermonuclear reactors for the accumulation of tritium. However, an important factor in their use is the preservation of the stability of their strength and structural properties when under the influence of external factors that determine the time frame of their operation. This paper presents the results of a study that investigated the influence of the LiTiO2 phase on the increasing resistance to degradation and corrosion of Li2TiO3 ceramic when exposed to aggressive acidic media. Using the X-ray diffraction method, it was found that an increase in the concentration of LiClO4·3H2O during synthesis leads to the formation of a cubic LiTiO2 phase in the structure as a result of thermal sintering of the samples. During corrosion tests, it was found that the presence of the LiTiO2 phase leads to a decrease in the degradation rate in acidic media by 20–70%, depending on the concentration of the phase. At the same time, and in contrast to the samples of Li2TiO3 ceramics, for which the mechanisms of degradation during a long stay in aggressive media are accompanied by large mass losses, for the samples containing the LiTiO2 phase, the main degradation mechanism is pitting corrosion with the formation of pitting inclusions. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (No. AP08855734)
    corecore