5,132 research outputs found
Enhancement of the electric dipole moment of the electron in the YbF molecule
We calculate an effective electric field on the unpaired electron in the YbF
molecule. This field determines sensitivity of the molecular experiment to the
electric dipole moment of the electron. We use experimental value of the
spin-doubling constant to estimate the admixture of the configuration with the
hole in the 4f-shell of Ytterbium to the ground state of the molecule. This
admixture reduces the field by 7%. Our value for the effictive field is 5.1
a.u. = 2.5 10^{10} V/cm.Comment: 5 pages, LATEX, uses revtex.st
Microspectroscopy and Imaging in the THz Range Using Coherent CW Radiation
A novel THz near-field spectrometer is presented which allows to perform
biological and medical studies with high spectral resolution combined with a
spatial resolution down to l/100. In the setup an aperture much smaller than
the used wavelength is placed in the beam very close to the sample. The sample
is probed by the evanescent wave behind the aperture. The distance is measured
extremely accurate by a confocal microscope. We use monochromatic sources which
provide powerful coherent cw radiation tuneable from 50 GHz up to 1.5 THz.
Transmission and reflection experiments can be performed which enable us to
study solids and molecules in aqueous solution. Examples for spectroscopic
investigations on biological tissues are presented.Comment: 4 pages, 5 figures, email: [email protected]
Electric dipole moment of the electron in YbF molecule
Ab initio calculation of the hyperfine, P-odd, and P,T-odd constants for the
YbF molecule was performed with the help of the recently developed technique,
which allows to take into account correlations and polarization in the
outercore region. The ground state electronic wave function of the YbF molecule
is found with the help of the Relativistic Effective Core Potential method
followed by the restoration of molecular four-component spinors in the core
region of ytterbium in the framework of a non-variational procedure. Core
polarization effects are included with the help of the atomic Many Body
Perturbation Theory for Yb atom. For the isotropic hyperfine constant A,
accuracy of our calculation is about 3% as compared to the experimental datum.
The dipole constant Ad (which is much smaller in magnitude), though better than
in all previous calculations, is still underestimated by almost 23%. Being
corrected within a semiempirical approach for a perturbation of 4f-shell in the
core of Yb due to the bond making, this error is reduced to 8%. Our value for
the effective electric field on the unpaired electron is 4.9 a.u.=2.5E+10 V/cm.Comment: 7 pages, REVTE
Enhancement of the electric dipole moment of the electron in PbO
The a(1) state of PbO can be used to measure the electric dipole moment of
the electron d_e. We discuss a semiempirical model for this state, which yields
an estimate of the effective electric field on the valence electrons in PbO.
Our final result is an upper limit on the measurable energy shift, which is
significantly larger than was anticipated earlier: .Comment: 4 pages, revtex4, no figures, submitted to PR
Electric dipole moment enhancement factor of thallium
The goal of this work is to resolve the present controversy in the value of
the EDM enhancement factor of Tl. We have carried out several calculations by
different high-precision methods, studied previously omitted corrections, as
well as tested our methodology on other parity conserving quantities. We find
the EDM enhancement factor of Tl to be equal to -573(20). This value is 20%
larger than the recently published result of Nataraj et al. [Phys. Rev. Lett.
106, 200403 (2011)], but agrees very well with several earlier results.Comment: 5 pages; v2: link to supplemental material adde
Macroscopic amplification of electroweak effects in molecular Bose-Einstein condensates
We investigate the possible use of Bose-Einstein condensates of diatomic
molecules to measure nuclear spin-dependent parity violation effects, outlining
a detection method based on the internal Josephson effect between molecular
states of opposite parity. When applied to molecular condensates, the fine
experimental control achieved in atomic bosonic Josephson junctions could
provide data on anapole moments and neutral weak couplings.Comment: 5 pages. To be published Phys. Rev. A (Rapid Communication) (2012
Using Molecules to Measure Nuclear Spin-Dependent Parity Violation
Nuclear spin-dependent parity violation arises from weak interactions between
electrons and nucleons, and from nuclear anapole moments. We outline a method
to measure such effects, using a Stark-interference technique to determine the
mixing between opposite-parity rotational/hyperfine levels of ground-state
molecules. The technique is applicable to nuclei over a wide range of atomic
number, in diatomic species that are theoretically tractable for
interpretation. This should provide data on anapole moments of many nuclei, and
on previously unmeasured neutral weak couplings
Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer
The main subject of this contribution is the all-optical control over the
state of polarization (SOP) of light, understood as the control over the SOP of
a signal beam by the SOP of a pump beam. We will show how the possibility of
such control arises naturally from a vectorial study of pump-probe Raman
interactions in optical fibers. Most studies on the Raman effect in optical
fibers assume a scalar model, which is only valid for high-PMD fibers (here,
PMD stands for the polarization-mode dispersion). Modern technology enables
manufacturing of low-PMD fibers, the description of which requires a full
vectorial model. Within this model we gain full control over the SOP of the
signal beam. In particular we show how the signal SOP is pulled towards and
trapped by the pump SOP. The isotropic symmetry of the fiber is broken by the
presence of the polarized pump. This trapping effect is used in experiments for
the design of new nonlinear optical devices named Raman polarizers. Along with
the property of improved signal amplification, these devices transform an
arbitrary input SOP of the signal beam into one and the same SOP towards the
output end. This output SOP is fully controlled by the SOP of the pump beam. We
overview the sate-of-the-art of the subject and introduce the notion of an
"ideal Raman polarizer"
Enhancement of the electric dipole moment of the electron in BaF molecule
We report results of ab initio calculation of the spin-rotational Hamiltonian
parameters including P- and P,T-odd terms for the BaF molecule. The ground
state wave function of BaF molecule is found with the help of the Relativistic
Effective Core Potential method followed by the restoration of molecular
four-component spinors in the core region of barium in the framework of a
non-variational procedure. Core polarization effects are included with the help
of the atomic Many Body Perturbation Theory for Barium atom. For the hyperfine
constants the accuracy of this method is about 5-10%.Comment: 8 pages, REVTEX, report at II International Symposium on Symmetries
in Subatomic Physics, Seattle 199
- …