22 research outputs found

    TCTP in Development and Cancer

    Get PDF
    The translationally controlled tumor protein (TCTP) is highly conserved among animal species. It is widely expressed in many different tissues. It is involved in regulating many fundamental processes, such as cell proliferation and growth, apoptosis, pluripotency, and the cell cycle. Hence, it is not surprising that it is essential for normal development and, if misregulated, can lead to cancer. Provided herein is an overview of the diverse functions of TCTP, with a focus on development. Furthermore, we discuss possible ways by which TCTP misregulation or mutation could result in cancer

    Characteristics and homogeneity of N6-methylation in human genomes.

    Get PDF
    A novel DNA modification, N-6 methylated deoxyadenosine (m6dA), has recently been discovered in eukaryotic genomes. Despite its low abundance in eukaryotes, m6dA is implicated in human diseases such as cancer. It is therefore important to precisely identify and characterize m6dA in the human genome. Here, we identify m6dA sites at nucleotide level, in different human cells, genome wide. We compare m6dA features between distinct human cells and identify m6dA characteristics in human genomes. Our data demonstrates for the first time that despite low m6dA abundance, the m6dA mark does often occur consistently at the same genomic location within a given human cell type, demonstrating m6dA homogeneity. We further show, for the first time, higher levels of m6dA homogeneity within one chromosome. Most m6dA are found on a single chromosome from a diploid sample, suggesting inheritance. Our transcriptome analysis not only indicates that human genes with m6dA are associated with higher RNA transcript levels but identifies allele-specific gene transcripts showing haplotype-specific m6dA methylation, which are implicated in different biological functions. Our analyses demonstrate the precision and consistency by which the m6dA mark occurs within the human genome, suggesting that m6dA marks are precisely inherited in humans

    A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response

    Get PDF
    Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.National Institutes of Health (U.S.) (New Innovator Award)Smith Family FoundationDamon Runyon Cancer Research FoundationSearle Scholars ProgramNational Institutes of Health (U.S.) (1R01CA119176-01

    1,2,3,4,6 penta-O -galloyl-β-D-glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II-induced hypertension

    Get PDF
    Background and Purpose: Hypertension is a multifactorial disease, manifested by vascular dysfunction, increased superoxide production and perivascular inflammation. In this study, we have hypothesized that 1,2,3,4,6 Penta‐O‐Galloyl‐β‐D‐Glucose (PGG) would inhibit vascular inflammation and protect from vascular dysfunction in an experimental model of hypertension. Experimental Approach: PGG was administered every two days in a dose of 10 mg·kg‐1 i.p during 14‐days of Ang II infusion and was used in a final concentration of 20 μM for in vitro studies. Key Results: Ang II administration increased leukocyte and T cell content in perivascular adipose tissue (pVAT) and administration of PGG significantly decreased total leukocyte and T cell infiltration in pVAT (1640±150 vs. 1028±57, p<0.01; 321±22 vs 158±18, cells/mg; p<0.01, respectively). This effect was observed in relation to all T cell subsets. PGG also decreased the content of T cells bearing CD25, CCR5 and CD44 receptors and the expression of both MCP‐1 in aorta and RANTES in pVAT. PGG administration decreased the content of TNF+ and IFN‐γ+ CD8 T cells and IL‐17A+ CD4+ and CD3+CD4‐CD8‐ cells. Importantly, these effects of PGG were associated with improved vascular function and decreased ROS production in the aortas of Ang II‐infused animals independently of blood pressure increase. Mechanistically, PGG (20 μM) directly inhibited CD25 and CCR5 expression in cultured T cells. It also decreased the content of IFN‐γ+ by CD8+ and CD3+CD4‐CD8‐ cells and IL‐17A+ by CD3+CD4‐CD8‐ cells. Conclusion and Implication: PGG may constitute an interesting immunomodulating strategy in the regulation of vascular dysfunction and hypertension

    Identification of methylated deoxyadenosines in vertebrates reveals diversity in DNA modifications.

    Get PDF
    Methylation of cytosine deoxynucleotides generates 5-methylcytosine (m(5)dC), a well-established epigenetic mark. However, in higher eukaryotes much less is known about modifications affecting other deoxynucleotides. Here, we report the detection of N(6)-methyldeoxyadenosine (m(6)dA) in vertebrate DNA, specifically in Xenopus laevis but also in other species including mouse and human. Our methylome analysis reveals that m(6)dA is widely distributed across the eukaryotic genome and is present in different cell types but is commonly depleted from gene exons. Thus, direct DNA modifications might be more widespread than previously thought.M.J.K. was supported by the Long-Term Human Frontiers Fellowship (LT000149/2010-L), the Medical Research Council grant (G1001690), and by the Isaac Newton Trust Fellowship (R G76588). The work was sponsored by the Biotechnology and Biological Sciences Research Council grant BB/M022994/1 (J.B.G. and M.J.K.). The Gurdon laboratory is funded by the grant 101050/Z/13/Z (J.B.G.) from the Wellcome Trust, and is supported by the Gurdon Institute core grants, namely by the Wellcome Trust Core Grant (092096/Z/10/Z) and by the Cancer Research UK Grant (C6946/A14492). C.R.B. and G.E.A. are funded by the Wellcome Trust Core Grant. We are grateful to D. Simpson and R. Jones-Green for preparing X. laevis eggs and oocytes, F. Miller for providing us with M. musculus tissue, T. Dyl for X. laevis eggs and D. rerio samples, and to Gurdon laboratory members for their critical comments. We thank U. Ruether for providing us with M. musculus kidney DNA (Entwicklungs- und Molekularbiologie der Tiere, Heinrich Heine Universitaet Duesseldorf, Germany). We also thank J. Ahringer, S. Jackson, A. Bannister and T. Kouzarides for critical input and advice, M. Sciacovelli and E. Gaude for suggestions.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.314

    Identification of Methylated Deoxyadenosines in Genomic DNA by dA6m DNA Immunoprecipitation.

    No full text
    dA6m DNA immunoprecipitation followed by deep sequencing (DIP-Seq) is a key tool in identifying and studying the genome-wide distribution of N6-methyldeoxyadenosine (dA6m). The precise function of this novel DNA modification remains to be fully elucidated, but it is known to be absent from transcriptional start sites and excluded from exons, suggesting a role in transcriptional regulation (Koziol et al., 2015). Importantly, its existence suggests that DNA might be more diverse than previously believed, as further DNA modifications might exist in eukaryotic DNA (Koziol et al., 2015). This protocol describes the method to perform dA6m DNA immunoprecipitation (DIP), as was applied to characterize the first dA6m methylome analysis in higher eukaryotes (Koziol et al., 2015). In this protocol, we describe how genomic DNA is isolated, fragmented and then DNA containing dA6m is pulled down with an antibody that recognizes dA6m in genomic DNA. After subsequent washes, DNA fragments that do not contain dA6m are eliminated, and the dA6m containing fragments are eluted from the antibody in order to be processed further for subsequent analyses. BACKGROUND: This protocol was developed in order to identify regions in the genome that contain dA6m. It can be used to detect dA6m in different genomes. As a guideline, this protocol was established from existing approaches used to detect adenosine methylation in RNA (Dominissini et al., 2013). We developed this protocol and adapted it for the detection of dA6m in DNA, rather than detecting adenosine methylation RNA. This was required, as no protocol was available at that time to allow the genome-wide identification of dA6m in eukaryotic DNA.Long-Term Human Frontiers Fellowship (LT000149/2010-L), Medical Research Council (Grant ID: G1001690), Isaac Newton Trust Fellowship (Grant ID: RG76588), Biotechnology and Biological Sciences Research Council (Grant ID: BB/M022994/1), Wellcome Trust (Grant ID: 101050/Z/13/Z), Wellcome Trust Core Grant (Grant ID: 092096/Z/10/Z), Cancer Research UK (Grant ID: C6946/A14492
    corecore