65 research outputs found

    Effects of Nicotine on Emotional Reactivity in PTSD and Non-PTSD Smokers: Results of a Pilot fMRI Study

    Get PDF
    There is evidence that individuals with posttraumatic stress disorder (PTSD) may smoke in part to regulate negative affect. This pilot fMRI study examined the effects of nicotine on emotional information processing in smokers with and without PTSD. Across groups, nicotine increased brain activation in response to fearful/angry faces (compared to neutral faces) in ventral caudate. Patch x Group interactions were observed in brain regions involved in emotional and facial feature processing. These preliminary findings suggest that nicotine differentially modulates negative information processing in PTSD and non-PTSD smokers

    Meditation-State Functional Connectivity (msFC): Strengthening of the Dorsal Attention Network and Beyond

    Get PDF
    Meditation practice alters intrinsic resting-state functional connectivity (rsFC) in the default mode network (DMN). However, little is known regarding the effects of meditation on other resting-state networks. The aim of current study was to investigate the effects of meditation experience and meditation-state functional connectivity (msFC) on multiple resting-state networks (RSNs). Meditation practitioners (MPs) performed two 5-minute scans, one during rest, one while meditating. A meditation naïve control group (CG) underwent one resting-state scan. Exploratory regression analyses of the relations between years of meditation practice and rsFC and msFC were conducted. During resting-state, MP as compared to CG exhibited greater rsFC within the Dorsal Attention Network (DAN). Among MP, meditation, as compared to rest, strengthened FC between the DAN and DMN and Salience network whereas it decreased FC between the DAN, dorsal medial PFC, and insula. Regression analyses revealed positive correlations between the number of years of meditation experience and msFC between DAN, thalamus, and anterior parietal sulcus, whereas negative correlations between DAN, lateral and superior parietal, and insula. These findings suggest that the practice of meditation strengthens FC within the DAN as well as strengthens the coupling between distributed networks that are involved in attention, self-referential processes, and affective response

    Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes

    Get PDF
    Although functional brain imaging has established that individuals with unipolar major depressive disorder (MDD) are characterized by frontostriatal dysfunction during reward processing, no research to date has examined the chronometry of neural responses to rewards in euthymic individuals with a history of MDD

    Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards

    Get PDF
    Abstract Background There has been significant progress in identifying genes that confer risk for autism spectrum disorders (ASDs). However, the heterogeneity of symptom presentation in ASDs impedes the detection of ASD risk genes. One approach to understanding genetic influences on ASD symptom expression is to evaluate relations between variants of ASD candidate genes and neural endophenotypes in unaffected samples. Allelic variations in the oxytocin receptor (OXTR) gene confer small but significant risk for ASDs for which the underlying mechanisms may involve associations between variability in oxytocin signaling pathways and neural response to rewards. The purpose of this preliminary study was to investigate the influence of allelic variability in the OXTR gene on neural responses to monetary rewards in healthy adults using functional magnetic resonance imaging (fMRI). Methods The moderating effects of three single nucleotide polymorphisms (SNPs) (rs1042778, rs2268493 and rs237887) of the OXTR gene on mesolimbic responses to rewards were evaluated using a monetary incentive delay fMRI task. Results T homozygotes of the rs2268493 SNP demonstrated relatively decreased activation in mesolimbic reward circuitry (including the nucleus accumbens, amygdala, insula, thalamus and prefrontal cortical regions) during the anticipation of rewards but not during the outcome phase of the task. Allelic variation of the rs1042778 and rs237887 SNPs did not moderate mesolimbic activation during either reward anticipation or outcomes. Conclusions This preliminary study suggests that the OXTR SNP rs2268493, which has been previously identified as an ASD risk gene, moderates mesolimbic responses during reward anticipation. Given previous findings of decreased mesolimbic activation during reward anticipation in ASD, the present results suggest that OXTR may confer ASD risk via influences on the neural systems that support reward anticipation

    Prediction of Smoking Risk From Repeated Sampling of Environmental Images: Model Validation

    No full text
    BackgroundViewing their habitual smoking environments increases smokers’ craving and smoking behaviors in laboratory settings. A deep learning approach can differentiate between habitual smoking versus nonsmoking environments, suggesting that it may be possible to predict environment-associated smoking risk from continuously acquired images of smokers’ daily environments. ObjectiveIn this study, we aim to predict environment-associated risk from continuously acquired images of smokers’ daily environments. We also aim to understand how model performance varies by location type, as reported by participants. MethodsSmokers from Durham, North Carolina and surrounding areas completed ecological momentary assessments both immediately after smoking and at randomly selected times throughout the day for 2 weeks. At each assessment, participants took a picture of their current environment and completed a questionnaire on smoking, craving, and the environmental setting. A convolutional neural network–based model was trained to predict smoking, craving, whether smoking was permitted in the current environment and whether the participant was outside based on images of participants’ daily environments, the time since their last cigarette, and baseline data on daily smoking habits. Prediction performance, quantified using the area under the receiver operating characteristic curve (AUC) and average precision (AP), was assessed for out-of-sample prediction as well as personalized models trained on images from days 1 to 10. The models were optimized for mobile devices and implemented as a smartphone app. ResultsA total of 48 participants completed the study, and 8008 images were acquired. The personalized models were highly effective in predicting smoking risk (AUC=0.827; AP=0.882), craving (AUC=0.837; AP=0.798), whether smoking was permitted in the current environment (AUC=0.932; AP=0.981), and whether the participant was outside (AUC=0.977; AP=0.956). The out-of-sample models were also effective in predicting smoking risk (AUC=0.723; AP=0.785), whether smoking was permitted in the current environment (AUC=0.815; AP=0.937), and whether the participant was outside (AUC=0.949; AP=0.922); however, they were not effective in predicting craving (AUC=0.522; AP=0.427). Omitting image features reduced AUC by over 0.1 when predicting all outcomes except craving. Prediction of smoking was more effective for participants whose self-reported location type was more variable (Spearman ρ=0.48; P=.001). ConclusionsImages of daily environments can be used to effectively predict smoking risk. Model personalization, achieved by incorporating information about daily smoking habits and training on participant-specific images, further improves prediction performance. Environment-associated smoking risk can be assessed in real time on a mobile device and can be incorporated into device-based smoking cessation interventions
    corecore