5 research outputs found

    Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer

    Get PDF
    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. Copyright © 2014 El-Sayed Negim et al.The authors gratefully acknowledge the funding provided by the European Union under the Marie Curie Action International Incoming Fellowships (FP7-PEOPLE-2011-IIF), Grant agreement PIIF-GA-2011 (Project no. 300427) ProSeC, for research on the production of sustainable self-compacting concrete.Published versio

    Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Get PDF
    © 2014 El-Sayed Negim et al. This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.The authors gratefully acknowledge the funding provided by the European Union under the Marie Curie Action: International Incoming Fellowships (FP7-PEOPLE-2011-IIF), Grant agreement PIIF-GA-2011 (Project no. 300427) ProSeC for research on the production of sustainable self-compacting concrete.Published versio
    corecore