22 research outputs found

    Competition and coexistence of antiferromagnetism and superconductivity in RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals

    Full text link
    We use c-axis resistivity and magnetoresistance measurements to study the interplay between antiferromagnetic (AF) and superconducting (SC) ordering in underdoped RBa_2Cu_3O_{6+x} (R = Lu, Y) single crystals. Both orders are found to emerge from an anisotropic 3D metallic state, upon which antiferromagnetism opposes superconductivity by driving the doped holes towards localization. Despite the competition, the superconductivity sets in before the AF order is completely destroyed and coexists with latter in a certain range of hole doping. We find also that strong magnetic fields affect the AF-SC interplay by both suppressing the superconductivity and stabilizing the Neel order.Comment: 7 pages, 6 figure

    Normal-state resistivity anisotropy in underdoped RBa_2Cu_3O_{6+x} crystals

    Full text link
    We have revealed new features in the out-of-plane resistivity rho_c of heavily underdoped RBa_2Cu_3O_{6+x} (R=Tm,Lu) single crystals, which give evidence for two distinct mechanisms contributing the c-axis transport. We have observed a crossover towards "metal-like" (d rho_c/d T > 0) behavior at the temperature T_m which quickly increases with decreasing doping. The "metal-like" conductivity contribution dominates at T < T_m and provides a saturation of the resistivity anisotropy, rho_c / rho_{ab}. The antiferromagnetic ordering is found to block this "metal-like" part of the c-axis conductivity and complete decoupling of CuO_2 planes, which may be the reason of superconductivity disappearance.Comment: RevTex, 4 pages including 4 eps figures. To be published in Phys.Rev.Let

    Peculiarities of electronic heat capacity of thulium cuprates in pseudogap state

    Full text link
    Precise calorimetric measurements have been carried out in the 7 - 300 K temperature range on two ceramic samples of thulium 123 cuprates TmBa2Cu3O6.92 and TmBa2Cu3O6.70. The temperature dependence of the heat capacity was analyzed in the region where the pseudogap state (PGS) takes place. The lattice contribution was subtracted from the experimental data. The PGS component has been obtained by comparing electronic heat capacities of two investigated samples because the PGS contribution for the 6.92 sample is negligible. The anomalous behavior of the electronic heat capacity near the temperature boundary of PGS was found. It is supposed that this anomaly is due to peculiarities in N(E) function where N is the density of electronic states and E is the energy of carriers of charge.Comment: 12 pages, 3 Postscript figure

    Anisotropic optical properties of single-crystal GdBa2Cu3O7-delta

    Get PDF
    The optical spectrum of reduced-T(c) GdBa2Cu3O7-delta has been measured for polarizations parallel and perpendicular to the ab plane. The sample was an oxygen-deficient single crystal with a large face containing the c axis. The polarized reflectance from this face was measured from 20-300 K in the spectral region from 30-3000 cm-1, with 300 K data to 30 000 cm-1. Kramers-Kronig analysis was used to determine the spectral dependence of the ab and the c components of the dielectric tensor. The optical properties are strongly anisotropic. The ab-plane response resembles that of other reduced-T(c) materials whereas the c axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response along c above and below T(c). This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes

    Resistive Transition and Upper Critical Field in Underdoped YBa_2Cu_3O_{6+x} Single Crystals

    Full text link
    A superconducting transition in the temperature dependence of the ab-plane resistivity of underdoped YBa_2Cu_3O_{6+x} crystals in the range T_c<30 K has been investigated. Unlike the case of samples with the optimal level of doping, the transition width increased insignificantly with magnetic field, and in the range T_c<13 K it decreased with increasing magnetic field. The transition point T_c(B) was determined by analyzing the fluctuation conductivity. The curves of B_{c2}(T) measured in the region T/T_c>0.1 did not show a tendency to saturation and had a positive second derivative everywhere, including the immediate neighborhood of T_c. The only difference among the curves of B_{c2}(T) for different crystal states is the scales of T and B, so they can be described in terms of a universal function, which fairly closely follows Alexandrov's model of boson superconductivity.Comment: 10 Revtex pages, 6 figures, uses psfig.st
    corecore