5 research outputs found

    Sistema de estimulação elétrica funcional para controle da posição da perna utilizando controlador LQG/LTR

    No full text
    A lesão da medula espinhal é um dos mais graves acometimentos que pode afetar o ser humano. A Estimulação Elétrica Funcional (FES - Functional Electrical Stimulation) tem sido utilizada para auxiliar no restabelecimento de funções motoras em paraplégicos. Este projeto faz parte de um estudo multidisciplinar que tem por objetivo implementar um sistema de estimulação elétrica funcional para controlar a posição da perna de paraplégicos utilizando controlador Linear Quadrático Gaussiano (LQG) com o princípio de recuperação da malha objetivo (Loop Transfer Recovery – LTR), conhecido como LQG/LTR. A plataforma de testes utilizada é composta por um estimulador elétrico neuromuscular de 8 canais, uma cadeira instrumentada com sensores de posição, velocidade e aceleração angulares, um dispositivo NI myRIO e uma interface desenvolvida no software LabVIEW. Um modelo de segunda ordem, chamado de modelo nominal e um modelo de terceira ordem com um zero e atraso, chamado de modelo real, foram utilizados para representar o movimento de extensão da perna resultante da aplicação da FES. O controlador LQG/LTR foi utilizado para recuperar as propriedades do Filtro de Kalman como comportamento global do sistema, que além de prover boas características de robustez e sensibilidade, simplifica o projeto do controlador e requer a medição de uma única variável de estado. As identificações dos parâmetros dos modelos apresentaram boa correlação, indicando que os modelos representam suficientemente bem a dinâmica do movimento estudado. Foi possível projetar os controladores para os voluntários de maneira que os critérios de desempenho nominal e estabilidade robusta fossem atendidos para todas as frequências, e o critério de desempenho robusto fosse atendido apenas para baixas frequências. Os testes em malha fechada atingiram as posições especificadas, indicando que o uso do controlador LQG/LTR é adequado em sistemas de estimulação elétrica funcional.A spinal cord injury is one of the most serious events that can affect humans. The Functional Electrical Stimulation (FES) has been used to help restore motor function in paraplegics. This work is part of a multidisciplinary study that aims to implement a FES system to control the paraplegics leg position using a Linear Quadratic Gaussian (LQG) controller, combined with the principle of Loop Transfer Recovery (LTR), or LQG/LTR controller. The platform test used is composed of an 8 channels neuromuscular electrical stimulator, an instrumented chair with angular position, velocity and acceleration sensors, an NI myRIO device and an interface developed in LabVIEW software. A second-order model, called nominal model, and a thirdorder model with a zero and delay, called real model, were used to represent the leg extension movement resulting from the application of FES. The LQG/LTR controller was used to recovery the Kalman Filter properties as global behavior of the controller, which in addition to providing good characteristics of robustness and sensitivity, simplifies the LQG design procedure, and requires measurement of only one state variable. The identification of the model parameters showed good correlation, indicating that the models represent well enough the dynamics of studied movement. It was possible to design the controllers in a way that the criteria for nominal performance and robust stability were met for all frequencies, and the criteria for robust performance was attended only to low frequencies. The closed-loop testes reached the specified position, indicating that using the LQG / LTR controller is appropriate for functional electrical stimulation systems.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Controle da posição da perna de pessoas hígidas utilizando um controlador PID

    No full text
    A Estimulação Elétrica Funcional (FES - Functional Electrical Stimulation) tem sido utilizada na ajuda do restabelecimento de funções motoras em pacientes hemiplégicos e paraplégicos. A estimulação aplicada em níveis adequados pode ser tão eficaz no fortalecimento muscular quanto uma contração muscular voluntária. Este trabalho faz parte de um projeto multidisciplinar que integra controle e instrumentação que tem por objetivo controlar os movimentos dos membros inferiores de pacientes paraplégicos. Utilizando um processador digital de sinais e um modelo matemático linear simplificado efetuou-se a implementação de um sistema de controle em malha fechada, por meio de um controlador PID, da posição da perna de uma pessoa hígida. Implementou-se também o circuito lógico de um estágio formador de onda de um Estimulador Elétrico Neuromuscular, utilizando LabVIEW. Os parâmetros de estirnulação podem ser alterados com agilidade e facilidade. Resultados experimentais ficaram muito próximos aos obtidos através das simulações. O sistema de controle conseguiu estabilizar a posição da perna de pessoas hígidas no ângulo desejadoThe Functional Electrical Stimulation (FES) has been used to help restore motor functions of hemiplegic and paraplegic patients. The FES applied at appropriate levels can be as effective in muscle strengthening as a voluntary muscle contraction. This work is part of a multidisciplinary project that integrates control systems and instrumentation to control the movements of the lower limbs of paraplegic patients. Using a digital signal processor and a simplified linear mathematical model, a PID controller was implemented with the aim of controlling the position of the leg of healthy patients. The Neuromuscular Electrical Stimulator logic circuit was implemented using LabVIEW. The stimulation parameters can be changed easily and quickly. The experimental results were very elose to those simulated. The control system was able to stabilize the position of the leg of a patient at a desired angleCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Evaluation of Commercial Ropes Applied as Artificial Tendons in Robotic Rehabilitation Orthoses

    No full text
    International audienceThis study aims to present the design, selection and testing of commercial ropes (artificial tendons) used on robotic orthosis to perform the hand movements for stroke individuals over upper limb rehabilitation. It was determined the load applied in the rope would through direct measurements performed on four individuals after stroke using a bulb dynamometer. A tensile strength test was performed using eight commercial ropes in order to evaluate the maximum breaking force and select the most suitable to be used in this application. Finally, a pilot test was performed with a user of the device to ratify the effectiveness of the rope. The load on the cable was 12.38 kgf (121.4 N) in the stroke-affected hand, which is the maximum tensile force that the rope must to supports. Paragliding rope (DuPont™ Kevlar ® ) supporting a load of 250 N at a strain of 37 mm was selected. The clinical test proved the effectiveness of the rope, supporting the requested efforts, without presenting permanent deformation, effectively performing the participant’s finger opening

    Digital controller design considering hardware constraints: application in a paraplegic patient

    No full text
    INTRODUCTION: A methodology was developed for implementing closed-loop control algorithms and for evaluating the behavior of a system, considering certain component restrictions used in laboratory implementation. METHODS: Mathematical functions representing a model of the biological system were used for knee extension/flexion movements. A Proportional Integral Derivative (PID) controller and another one using the root locus method were designed to control a patient’s leg position by applying functional electrical stimulation (FES). The controllers were simulated in Matlab and ISIS Proteus. After the simulations were performed, the codes were embedded in a microcontroller, and tests were conducted on a paraplegic volunteer. To the best of the authors’ knowledge, this is the first time that ISIS Proteus software resources have been used prior to implementing a closed-loop system designed to control the leg position of patients. RESULTS:This method obviates the application of initial controller tests directly to patients. The response obtained in the experiment with a paraplegic patient complied with the specifications set in terms of the steady-state error, the settling time, and the percentage overshoot. The proposed procedure was successfully applied for the implementation of a controller used to control the leg position of a paraplegic person by electrical muscle stimulation. CONCLUSION:The methodology presented in this manuscript can contribute to the implementation of analog and digital controllers because hardware limitations are typically not taken into account in the design of controllers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
    corecore