7,309 research outputs found
Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: topology and boundary effects
The role of dimensionality (Euclidean versus fractal), spatial extent,
boundary effects and system topology on the efficiency of diffusion-reaction
processes involving two simultaneously-diffusing reactants is analyzed. We
present numerically-exact values for the mean time to reaction, as gauged by
the mean walklength before reactive encounter, obtained via application of the
theory of finite Markov processes, and via Monte Carlo simulation. As a general
rule, we conclude that for sufficiently large systems, the efficiency of
diffusion-reaction processes involving two synchronously diffusing reactants
(two-walker case) relative to processes in which one reactant of a pair is
anchored at some point in the reaction space (one walker plus trap case) is
higher, and is enhanced the lower the dimensionality of the system. This
differential efficiency becomes larger with increasing system size and, for
periodic systems, its asymptotic value may depend on the parity of the lattice.
Imposing confining boundaries on the system enhances the differential
efficiency relative to the periodic case, while decreasing the absolute
efficiencies of both two-walker and one walker plus trap processes. Analytic
arguments are presented to provide a rationale for the results obtained. The
insights afforded by the analysis to the design of heterogeneous catalyst
systems are also discussed.Comment: 15 pages, 8 figures, uses revtex4, accepted for publication in
Physica
Aggregation of dipolar colloidal particles: Geometric effects
To understand the importance of confinement and the influence of translational degrees of freedom on aggregation of dipolar colloidal particles, we calculate numerically-exact values for the mean encounter time for two nonspherically symmetric molecules to form a two-molecule cluster, regarded here as a precursor to aggregation. A lattice model is formulated in which the asymmetry of the molecules is accounted for by representing each as a "dimer" in the sense that each molecule is specified to occupy two adjacent lattice sites. The two dimers undergo simultaneous translation, and the mean times for their encounter are determined. Exact numerical results are obtained via application of the theory of finite Markov processes. The results allow one to examine in a detailed way the interplay among such factors as geometrical confinement, system size, translational motion, and specific orientational effects in influencing the aggregation event. The results are compared with previously reported theoretical predictions and experiments on the behavior of dipolar colloidal particles in the presence of an applied magnetic field
Funneled angle landscapes for helical proteins
We use crystallographic data for four helical iron proteins (cytochrome c-b₅₆₂, cytochrome c′, sperm whale myoglobin, human cytoglobin) to calculate radial and angular signatures as each unfolds from the native state stepwise though four unfolded states. From these data we construct an angle phase diagram to display the evolution of each protein from its native state; and, in turn, the phase diagram is used to construct a funneled angle landscape for comparison with the topography of its folding energy landscape. We quantify the departure of individual helical and turning regions from the areal, angular profile of corresponding regions of the native state. This procedure allows us to identify the similarities and differences among individual helical and turning regions in the early stages of unfolding of the four helical heme proteins
Building Solidarity for Women Faculty in Higher Education
Book review of Disrupting the Culture of Silence: Confronting Gender Inequality and Making Change in Higher Education edited by Kristine De Welde and Andi Stepnick. Sterling, VA: Stylus Publishing, 2015
Mathematical Modelling of the Electrical Discharge Mechanical Alloying Process
AbstractIn the paper, a comprehensive study of the electro-discharge mechanical alloying with using brush electrode is presented. This kind of a novel method is denoted as BEDMA (Brush Electro-Discharge Mechanical Alloying) and it combines features of electrical discharge machining with thermo-mechanical treatment. Electrode is being made of material which is to be alloyed on the part surface. A mathematical modelling of the thermal processes and mechanical action during the interaction of a single filament on the machined surface have been developed and used to estimation of the material transfer rate
- …