186 research outputs found
Fluent temporal logic for discrete-time event-based models
Fluent model checking is an automated technique for verifying that an event-based operational model satisfies some state-based declarative properties. The link between the event-based and state-based formalisms is defined through fluents which are state predicates whose value are determined by the occurrences of initiating and terminating events that make the fluents values become true or false, respectively. The existing fluent temporal logic is convenient for reasoning about untimed event-based models but difficult to use for timed models. The paper extends fluent temporal logic with temporal operators for modelling timed properties of discrete-time event-based models. It presents two approaches that differ on whether the properties model the system state after the occurrence of each event or at a fixed time rate. Model checking of timed properties is made possible by translating them into the existing untimed framework. Copyright 2005 ACM
PSD-95 protects synapses from β-amyloid
Beta-amyloid (Aβ) depresses excitatory synapses by a poorly understood mechanism requiring NMDA receptor (NMDAR) function. Here, we show that increased PSD-95, a major synaptic scaffolding molecule, blocks the effects of Aβ on synapses. The protective effect persists in tissue lacking the AMPA receptor subunit GluA1, which prevents the confounding synaptic potentiation by increased PSD-95. Aβ modifies the conformation of the NMDAR C-terminal domain (CTD) and its interaction with protein phosphatase 1 (PP1), producing synaptic weakening. Higher endogenous levels or overexpression of PSD-95 block Aβ-induced effects on the NMDAR CTD conformation, its interaction with PP1, and synaptic weakening. Our results indicate that increased PSD-95 protects synapses from Aβ toxicity, suggesting that low levels of synaptic PSD-95 may be a molecular sign indicating synapse vulnerability to Aβ. Importantly, pharmacological inhibition of its depalmitoylation increases PSD-95 at synapses and rescues deficits caused by Aβ, possibly opening a therapeutic avenue against Alzheimer’s disease
Care coordination in a business-to-business and a business-to-consumer model for telemonitoring patients with chronic diseases
Introduction For telemonitoring to support care coordination, a sound business model is conditional. The aim of this study is to explore the systemic and economic differences in care coordination via business-to-business and business-to-consumer models for telemonitoring patients with chronic diseases. Methods We performed a literature search in order to design the business-to-business and business-to-consumer telemonitoring models, and to assess the design elements and themes by applying the activity system theory, and describe the transaction costs in each model. The design elements are content, structure, and governance, while the design themes are novelty, lock-in, complementarities, and efficiency. In the transaction cost analysis, we looked into all the elements of a transaction in both models. Results Care coordination in the business-to-business model is designed to be organized between the places of activity, rather than the participants in the activity. The design of the business-to-business model creates a firm lock-in but for a limited time. In the business-to-consumer model, the interdependencies are to be found between the persons in the care process and not between the places of care. The differences between the models were found in both the design elements and the design themes. Discussion Care coordination in the business-to-business and business-to-consumer models for telemonitoring chronic diseases differs in principle in terms of design elements and design themes. Based on the theoretical models, the transaction costs could potentially be lower in the business-to-consumer model than in the business-to-business, which could be a promoting economic principle for the implementation of telemonitoring
Assessment of a Business-to-Consumer (B2C) model for Telemonitoring patients with Chronic Heart Failure (CHF)
Background: The purpose of this study is to assess the Business-to-Consumer (B2C) model for telemonitoring patients with Chronic Heart Failure (CHF) by analysing the value it creates, both for organizations or ventures that provide telemonitoring services based on it, and for society. Methods: The business model assessment was based on the following categories: caveats, venture type, six-factor alignment, strategic market assessment, financial viability, valuation analysis, sustainability, societal impact, and technology assessment. The venture valuation was performed for three jurisdictions (countries) - Singapore, the Netherlands and the United States - in order to show the opportunities in a small, medium-sized, and large country (i.e. population). Results: The business model assessment revealed that B2C telemonitoring is viable and profitable in the Innovating in Healthcare Framework. Analysis of the ecosystem revealed an average-to-excellent fit with the six factors. The structure and financing fit was average, public policy and technology alignment was good, while consumer alignment and accountability fit was deemed excellent. The financial prognosis revealed that the venture is viable and profitable in Singapore and the Netherlands but not in the United States due to relatively high salary inputs. Conclusions: The B2C model in telemonitoring CHF potentially creates value for patients, shareholders of the service provider, and society. However, the validity of the results could be improved, for instance by using a peer-reviewed framework, a systematic literature search, case-based cost/efficiency inputs, and varied scenario inputs
Expressiveness modulo Bisimilarity of Regular Expressions with Parallel Composition (Extended Abstract)
The languages accepted by finite automata are precisely the languages denoted
by regular expressions. In contrast, finite automata may exhibit behaviours
that cannot be described by regular expressions up to bisimilarity. In this
paper, we consider extensions of the theory of regular expressions with various
forms of parallel composition and study the effect on expressiveness. First we
prove that adding pure interleaving to the theory of regular expressions
strictly increases its expressiveness up to bisimilarity. Then, we prove that
replacing the operation for pure interleaving by ACP-style parallel composition
gives a further increase in expressiveness. Finally, we prove that the theory
of regular expressions with ACP-style parallel composition and encapsulation is
expressive enough to express all finite automata up to bisimilarity. Our
results extend the expressiveness results obtained by Bergstra, Bethke and
Ponse for process algebras with (the binary variant of) Kleene's star
operation.Comment: In Proceedings EXPRESS'10, arXiv:1011.601
A Theory of Sampling for Continuous-time Metric Temporal Logic
This paper revisits the classical notion of sampling in the setting of
real-time temporal logics for the modeling and analysis of systems. The
relationship between the satisfiability of Metric Temporal Logic (MTL) formulas
over continuous-time models and over discrete-time models is studied. It is
shown to what extent discrete-time sequences obtained by sampling
continuous-time signals capture the semantics of MTL formulas over the two time
domains. The main results apply to "flat" formulas that do not nest temporal
operators and can be applied to the problem of reducing the verification
problem for MTL over continuous-time models to the same problem over
discrete-time, resulting in an automated partial practically-efficient
discretization technique.Comment: Revised version, 43 pages
RTLola Cleared for Take-Off: Monitoring Autonomous Aircraft
The autonomous control of unmanned aircraft is a highly safety-critical
domain with great economic potential in a wide range of application areas,
including logistics, agriculture, civil engineering, and disaster recovery. We
report on the development of a dynamic monitoring framework for the DLR ARTIS
(Autonomous Rotorcraft Testbed for Intelligent Systems) family of unmanned
aircraft based on the formal specification language RTLola. RTLola is a
stream-based specification language for real-time properties. An RTLola
specification of hazardous situations and system failures is statically
analyzed in terms of consistency and resource usage and then automatically
translated into an FPGA-based monitor. Our approach leads to highly efficient,
parallelized monitors with formal guarantees on the noninterference of the
monitor with the normal operation of the autonomous system
Model Checking Classes of Metric LTL Properties of Object-Oriented Real-Time Maude Specifications
This paper presents a transformational approach for model checking two
important classes of metric temporal logic (MTL) properties, namely, bounded
response and minimum separation, for nonhierarchical object-oriented Real-Time
Maude specifications. We prove the correctness of our model checking
algorithms, which terminate under reasonable non-Zeno-ness assumptions when the
reachable state space is finite. These new model checking features have been
integrated into Real-Time Maude, and are used to analyze a network of medical
devices and a 4-way traffic intersection system.Comment: In Proceedings RTRTS 2010, arXiv:1009.398
A compositional monitoring framework for hard real-time systems
Runtime Monitoring of hard real-time embedded systems is a promising technique for ensuring that a running system respects timing constraints, possibly combined with faults originated by the software and/or hardware. This is particularly important when we have real-time embedded systems made of several components that must combine different levels of criticality, and different levels of correctness requirements. This paper introduces a compositional monitoring framework coupled with guarantees that include time isolation and the response time of a monitor for a predicted violation. The kind of monitors that we propose are automatically generated by synthesizing logic formulas of a timed temporal logic, and their correctness is ensured by construction.This work was partially supported by National Funds through FCT (Portuguese Foundation for Science and Technology) and by ERDF (European Regional Development Fund) through COMPETE (Operational Programme ’Thematic Factors of Competitiveness’), within projects Ref. FCOMP-01-0124-FEDER-022701 (CISTER), FCOMP-01-0124- FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-020486 (AVIACC)
- …