7 research outputs found

    Real life experience with the wearable cardioverter-defibrillator in an international multicenter Registry

    Full text link
    Patients at high risk for sudden cardiac death (SCD) may benefit from wearable cardioverter defibrillators (WCD) by avoiding immediate implantable cardioverter defibrillator (ICD) implantation. Different factors play an important role including patient selection, compliance and optimal drug treatment. We aimed to present real world data from 4 centers from Germany and Switzerland. Between 04/2012 and 03/2019, 708 patients were included in this registry. Patients were followed up over a mean time of 28 ± 35.5 months. Outcome data including gender differences and different etiologies of cardiomyopathy were analyzed. Out of 708 patients (81.8% males, mean age 61.0 ± 14.6), 44.6% of patients had non-ischemic cardiomyopathy, 39.8% ischemic cardiomyopathy, 7.9% myocarditis, 5.4% prior need for ICD explantation and 2.1% channelopathy. The mean wear time of WCD was 21.2 ± 4.3 h per day. In 46% of patients, left ventricular ejection fraction (LVEF) was > 35% during follow-up. The younger the patient was, the higher the LVEF and the lower the wear hours per day were. The total shock rate during follow-up was 2.7%. Whereas an appropriate WCD shock was documented in 16 patients (2.2%), 3 patients received an inappropriate ICD shock (0.5%). During follow-up, implantation of a cardiac implantable electronic device was carried out in 34.5% of patients. When comparing German patients (n = 516) to Swiss patients (n = 192), Swiss patients presented with longer wear days (70.72 ± 49.47 days versus 58.06 ± 40.45 days; p = 0.001) and a higher ICD implantation rate compared to German patients (48.4% versus 29.3%; p = 0.001), although LVEF at follow-up was similar between both groups. Young age is a negative independent predictor for the compliance in this large registry. The most common indication for WCD was non-ischemic cardiomyopathy followed by ischemic cardiomyopathy. The compliance rate was generally high with a decrease of wear hours per day at younger age. Slight differences were found between Swiss and German patients, which might be related to differences in mentality for ICD implantation

    Takotsubo Syndrome: Translational Implications and Pathomechanisms

    No full text
    Takotsubo syndrome (TTS) is identified as an acute severe ventricular systolic dysfunction, which is usually characterized by reversible and transient akinesia of walls of the ventricle in the absence of a significant obstructive coronary artery disease (CAD). Patients present with chest pain, ST-segment elevation or ischemia signs on ECG and increased troponin, similar to myocardial infarction. Currently, the known mechanisms associated with the development of TTS include elevated levels of circulating plasma catecholamines and their metabolites, coronary microvascular dysfunction, sympathetic hyperexcitability, inflammation, estrogen deficiency, spasm of the epicardial coronary vessels, genetic predisposition and thyroidal dysfunction. However, the real etiologic link remains unclear and seems to be multifactorial. Currently, the elusive pathogenesis of TTS and the lack of optimal treatment leads to the necessity of the application of experimental models or platforms for studying TTS. Excessive catecholamines can cause weakened ventricular wall motion at the apex and increased basal motion due to the apicobasal adrenoceptor gradient. The use of beta-blockers does not seem to impact the outcome of TTS patients, suggesting that signaling other than the beta-adrenoceptor-associated pathway is also involved and that the pathogenesis may be more complex than it was expected. Herein, we review the pathophysiological mechanisms related to TTS; preclinical TTS models and platforms such as animal models, human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) models and their usefulness for TTS studies, including exploring and improving the understanding of the pathomechanism of the disease. This might be helpful to provide novel insights on the exact pathophysiological mechanisms and may offer more information for experimental and clinical research on TTS

    Preclinical short QT syndrome models: studying the phenotype and drug-screening

    Full text link
    Cardiovascular diseases are the main cause of sudden cardiac death (SCD) in developed and developing countries. Inherited cardiac channelopathies are linked to 5-10% of SCDs, mainly in the young. Short QT syndrome (SQTS) is a rare inherited channelopathy, which leads to both atrial and ventricular tachyarrhythmias, syncope, and even SCD. International European Society of Cardiology guidelines include as diagnostic criteria: (i) QTc ≤ 340 ms on electrocardiogram, (ii) QTc ≤ 360 ms plus one of the follwing, an affected short QT syndrome pathogenic gene mutation, or family history of SQTS, or aborted cardiac arrest, or family history of cardiac arrest in the young. However, further evaluation of the QTc ranges seems to be required, which might be possible by assembling large short QT cohorts and considering genetic screening of the newly described pathogenic mutations. Since the mechanisms underlying the arrhythmogenesis of SQTS is unclear, optimal therapy for SQTS is still lacking. The disease is rare, unclear genotype-phenotype correlations exist in a bevy of cases and the absence of an international short QT registry limit studies on the pathophysiological mechanisms of arrhythmogenesis and therapy of SQTS. This leads to the necessity of experimental models or platforms for studying SQTS. Here, we focus on reviewing preclinical SQTS models and platforms such as animal models, heterologous expression systems, human-induced pluripotent stem cell-derived cardiomyocyte models and computer models as well as three-dimensional engineered heart tissues. We discuss their usefulness for SQTS studies to examine genotype-phenotype associations, uncover disease mechanisms and test drugs. These models might be helpful for providing novel insights into the exact pathophysiological mechanisms of this channelopathy and may offer opportunities to improve the diagnosis and treatment of patients with SQT syndrome

    Incidence, recurrence and management of electrical storm in Brugada syndrome

    No full text
    Background:\bf Background: Brugada syndrome (BrS) is associated with ventricular tachyarrhythmias. However, the presence of electrical strom (ES) and its management still debated. Objectives:\bf Objectives: We present the outcome and management of 44 BrS patients suffering from ES. Methods:\bf Methods: A systematic literature review and pooled analysis Through database review including PubMed, Web of Science, Cochrane Libary and Cinahl studies were analyzed. Evidence from 7 reports of 808 BrS patients was identified. Results:\bf Results: The mean age of patients suffering from ES was 34 ±\pm 9.5 months (94.7% males, 65.8% spontaneous BrS type I). Using electrophysiological study ventricular tachycardia/ventricular fibrillation were inducible in 12/23 (52.2%). Recurrence of ES was documented in 6.1%. Death from ES was 8.2% after a follow-up of 83.5 ±\pm 53.4. In up to 27 ES resolved without treatment. External shock was required in 35.6%, internal ICD shock in 13.3%, Overdrive pacing, left cardiac sympathetic block and atropin in 2.2%. Short-term antiarrhythmic management was as the following: Isopreterenol or Isopreterenol in combination with quinidine 35.5%, orciprenaline in 2.2%, quinidine 2.2%, disopyramide 2.2% or denopamide 2.2%. However, lidocaine, magensium sulfate, mexiletine and propanolol failed to control ES. Conclusion:\bf Conclusion: Although ES is rare in BrS, this entity challenges physicians. Despite its high mortality rate, spontaneous termination is possible. Short-term management using Isoproterenol and/or quinidine might be safe. Prospective studies on management of ES are warranted

    Use of the Wearable Cardioverter‐Defibrillator Among Patients With Myocarditis and Reduced Ejection Fraction or Ventricular Tachyarrhythmia: Data From a Multicenter Registry

    No full text
    Background Data on the use of the wearable cardioverter‐defibrillator (WCD) among patients with myocarditis remain sparse. Consequently, evidence for guideline recommendations in this patient population is lacking. Methods and Results In total, 1596 consecutive patients were included in a multicenter registry from 8 European centers, with 124 patients (8%) having received the WCD due to myocarditis and reduced left ventricular ejection fraction or prior ventricular tachyarrhythmia. The mean age was 51.6±16.3 years, with 74% being male. Patients were discharged after index hospitalization on heart failure medication: Angiotensin‐converting enzyme inhibitors (62.5%), angiotensin‐receptor‐neprilysin inhibitor (22.9%), aldosterone‐antagonists (51%), or beta blockers (91.4%). The initial median left ventricular ejection fraction was 30% (22%–45%) and increased to 48% (39%–55%) over long‐term follow‐up (P<0.001). The median BNP (brain natriuretic peptide) level at baseline was 1702 pg/mL (565–3748) and decreased to 188 pg/mL (26–348) over long‐term follow‐up (P=0.022). The mean wear time was 79.7±52.1 days and 21.0±4.9 hours per day. Arrhythmic event rates documented by the WCD were 9.7% for nonsustained ventricular tachycardia, 6.5% for sustained ventricular tachycardia, and 0% for ventricular fibrillation. Subsequently, 2.4% of patients experienced an appropriate WCD shock. The rate of inappropriate WCD shocks was 0.8%. All 3 patients with appropriate WCD shock had experienced ventricular tachycardia/ventricular fibrillation before WCD prescription, with only 1 patient showing a left ventricular ejection fraction <35%. Conclusions Patients with myocarditis and risk for occurrence of ventricular tachyarrhythmia may benefit from WCD use. Prior ventricular arrhythmia might appear as a better risk predictor than a reduced left ventricular ejection fraction <35% in this population

    ComplexEye - a multi lens array microscope for High-Throughput embedded immune cell migration analysis

    No full text
    &lt;p&gt;This dataset contains raw high-resolution movies of migrating neutrophils, which were recorded using the ComplexEye, an array microscope with 16 independent aberration-corrected glass lenses spaced at the pitch of a 96-well plate. Please see the manuscript "ComplexEye - a multi lens array microscope for High-Throughput embedded immune cell migration analysis" for more information.&lt;/p&gt;&lt;p&gt;The movies can be assigned to the following figures in the manuscript:&lt;/p&gt;&lt;ul&gt;&lt;li&gt;96-well_plate_movies_n=1_complexeye.zip: Figure 3a&lt;/li&gt;&lt;li&gt;96-well_plate_movies_n=1_leica.zip: Figure 3a&lt;/li&gt;&lt;li&gt;384-well_plate_movies_n=1_complexeye.zip: Figure 3b&lt;/li&gt;&lt;li&gt;384-well_plate_movies_n=16_complexeye.zip: Figure 3c&lt;/li&gt;&lt;li&gt;R01.zip - R17.zip: Figure 4 and 5&lt;/li&gt;&lt;/ul&gt

    Real life experience with the wearable cardioverter-defibrillator in an international multicenter Registry

    No full text
    Patients at high risk for sudden cardiac death (SCD) may benefit from wearable cardioverter defibrillators (WCD) by avoiding immediate implantable cardioverter defibrillator (ICD) implantation. Different factors play an important role including patient selection, compliance and optimal drug treatment. We aimed to present real world data from 4 centers from Germany and Switzerland. Between 04/2012 and 03/2019, 708 patients were included in this registry. Patients were followed up over a mean time of 28 ±\pm 35.5 months. Outcome data including gender differences and different etiologies of cardiomyopathy were analyzed. Out of 708 patients (81.8% males, mean age 61.0 ±\pm 14.6), 44.6% of patients had non-ischemic cardiomyopathy, 39.8% ischemic cardiomyopathy, 7.9% myocarditis, 5.4% prior need for ICD explantation and 2.1% channelopathy. The mean wear time of WCD was 21.2 ±\pm 4.3 h per day. In 46% of patients, left ventricular ejection fraction (LVEF) was > 35% during follow-up. The younger the patient was, the higher the LVEF and the lower the wear hours per day were. The total shock rate during follow-up was 2.7%. Whereas an appropriate WCD shock was documented in 16 patients (2.2%), 3 patients received an inappropriate ICD shock (0.5%). During follow-up, implantation of a cardiac implantable electronic device was carried out in 34.5% of patients. When comparing German patients (n = 516) to Swiss patients (n = 192), Swiss patients presented with longer wear days (70.72 ±\pm 49.47 days versus 58.06 ±\pm 40.45 days; p = 0.001) and a higher ICD implantation rate compared to German patients (48.4% versus 29.3%; p = 0.001), although LVEF at follow-up was similar between both groups. Young age is a negative independent predictor for the compliance in this large registry. The most common indication for WCD was non-ischemic cardiomyopathy followed by ischemic cardiomyopathy. The compliance rate was generally high with a decrease of wear hours per day at younger age. Slight differences were found between Swiss and German patients, which might be related to differences in mentality for ICD implantation
    corecore