15 research outputs found

    Thin polymer films based on poly(vinyl alcohol) containing graphene oxide and reduced graphene oxide with functional properties

    Get PDF
    10 pags., 7 figs., 2 tabs.In this article, the effect of the addition of graphene oxide (GO) and reduced graphene oxide (rGO) on the mechanical properties, thermal stability, and electrical conductivity of polyvinyl alcohol (PVA) has been investigated. Different weight percentages of nanofillers ranging from 0.5 to 5 wt% have been combined with PVA. The ultrasonic technique has been applied to disperse nanofillers in the PVA solution. The nanocomposite films have been prepared via solution casting technique and the dispersion of nanofillers into the PVA has been studied through optical microscopy. The microstructure, crystallization behavior, and interfacial interaction were characterized through X-ray diffraction and Fourier transform infrared spectroscopy. Differential scanning calorimetry (DSC) and thermogravimetric analysis have been applied to study the thermal properties of the prepared nanocomposites. The DSC results revealed that the crystallization temperature and melting temperature were enhanced in the presence of GO nanofiller. Besides, the tensile strength at break was improved along with the addition of GO; however, elongation at break for PVA/GO and PVA/rGO was diminished. Moreover, all specimens showed insulating behavior and the only sample was electrically conducting, which contain a high amount of rGO (5 wt%).Spanish Ministry of Science and Innovation, Grant/Award Number:PID2019-107514GB-I0

    Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes

    No full text
    We report a threshold voltage decrease in a nematic liquid crystal compound, 4-cyano-4′-pentylbiphenyl (5CB), doped with graphene oxide (GO) flakes at a concentration of 0.05–0.3 wt %. The threshold voltage decrease was observed at the same concentration in electro-optic and dielectric spectroscopy measurements. The effect is related to the disrupted planar alignment due to the strong π–π stacking between the 5CB’s benzene rings and the graphene oxide’s structure. Additionally, we present the GO concentration dependence on the isotropic–nematic phase transition temperature, electric anisotropy, splay elastic constant, switch-on time, and switch-off time. The shape and dimensions of the GO flakes were studied using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The influence of the GO concentration on the physical properties and switching process in the presence of the electric field was discussed

    In-Line Gas Sensor Based on the Optical Fiber Taper Technology with a Graphene Oxide Layer

    No full text
    This article investigates the possibilities of gas detection using a tapered optical fiber coated with a graphene oxide layer. Measurement is based on changes in light beam propagation depending on the process of gas absorption to the graphene oxide layer. In this paper, we investigated the light change in a double-clad tapered optical fiber in a wide optical range. We present a special platform constructed for the deposition of additional functional materials that enable the preparation of the sensor module. Our results present differences in light transmission for three different kinds of gasses pure nitrogen, pure hydrogen, and a mixture of propane–butane. Measurements were provided in a wide range of 500 nm–1800 nm to find the most sensitive ages for which we are able to detect mentioned absorption and their interaction with light. Obtained results for pure gasses for which the refractive indices are similar to the air show the greatest changes for the visible range 750 nm–850 nm, and for propane–butane, changes are much visible in the whole investigated range

    Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxide

    No full text
    Since rigid polyurethane (PU) foams are one of the most effective thermal insulation materials with widespread application, it is an urgent requirement to improve its fire retardancy and reduce the smoke emission. The current work assessed the fire behavior of PU foam with non-halogen fire retardants system, containing histidine (H) and modified graphene oxide (GOA). For investigated system, three loadings (10, 20, and 30 wt.%) were used. The Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis, cone calorimetry (CC) and smoke density chamber tests as well as pre- and post-burning morphological evaluation using scanning electron microscope (SEM) were performed. Moreover, TGA combined with FT-IR was conducted to determine the substances, which could be evolved during the thermal decomposition of the PU with fire retardant system. The results indicated a reduction in heat release rate (HRR), maximum average rate of heat emission (MAHRE), the total heat release (THR) as well as the total smoke release (TSR), and maximum specific optical density (Dsmax) compared to the polyurethane with commercial fire retardant, namely ammonium polyphosphate (APP). A significantly improvement, especially in smoke suppression, suggested that HGOA system may be a candidate as a fire retardant to reduce the flammability of PU foams

    Flake Graphene as an Innovative Additive to Grease with Improved Tribological Properties

    No full text
    The paper presents the results of research on the use of flake graphene as an additive to plastic grease in order to improve its tribological properties. The influence of concentration (0.25–5.00 wt.%) and the form of graphene (graphene oxide, reduced graphene oxide) on selected properties of the base grease were investigated. It has been found that the addition of graphene flakes improves the anti-wear properties of the lubricant. The greatest improvement in the properties of the lubricant was achieved by using graphene at a concentration of 4.00 wt.%; the reduction in the average diameter of the wear scar was almost 70% for GO and RGO, compared to the base lubricant without the addition of graphene

    Thermoelectric properties of bismuth-doped magnesium silicide obtained by the self-propagating high-temperature synthesis

    No full text
    Doping is one of the possible ways to significantly increase the thermoelectric properties of many different materials. It has been confirmed that by introducing bismuth atoms into Mg sites in the Mg2Si compound, it is possible to increase career concentration and intensify the effect of phonon scattering, which results in remarkable enhancement in the figure of merit (ZT) value. Magnesium silicide has gained scientists’ attention due to its nontoxicity, low density, and inexpensiveness. This paper reports on our latest attempt to employ ultrafast self-propagating high-temperature synthesis (SHS) followed by the spark plasma sintering (SPS) as a synthesis process of doped Mg2Si. Materials with varied bismuth doping were fabricated and then thoroughly analyzed with the laser flash method (LFA), X-ray diffraction (XRD), scanning electron microscopy (SEM) with an integrated energy-dispersive spectrometer (EDS). For density measurement, the Archimedes method was used. The electrical conductivity was measured using a standard four-probe method. The Seebeck coefficient was calculated from measured Seebeck voltage in the sample subjected to a temperature gradient. The structural analyses showed the Mg2Si phase as dominant and Bi2Mg3 located at grain boundaries. Bismuth doping enhanced ZT for every dopant concentration. ZT = 0.44 and ZT=0.38 were obtained for 3wt% and 2wt% at 770 K, respectively

    Thermoelectric properties of bismuth-doped magnesium silicide obtained by the self-propagating high-temperature synthesis

    No full text
    Doping is one of the possible ways to significantly increase the thermoelectric properties of many different materials. It has been confirmed that by introducing bismuth atoms into Mg sites in the Mg2Si compound, it is possible to increase career concentration and intensify the effect of phonon scattering, which results in remarkable enhancement in the figure of merit (ZT) value. Magnesium silicide has gained scientists’ attention due to its nontoxicity, low density, and inexpensiveness. This paper reports on our latest attempt to employ ultrafast self-propagating high-temperature synthesis (SHS) followed by the spark plasma sintering (SPS) as a synthesis process of doped Mg2Si. Materials with varied bismuth doping were fabricated and then thoroughly analyzed with the laser flash method (LFA), X-ray diffraction (XRD), scanning electron microscopy (SEM) with an integrated energy-dispersive spectrometer (EDS). For density measurement, the Archimedes method was used. The electrical conductivity was measured using a standard four-probe method. The Seebeck coefficient was calculated from measured Seebeck voltage in the sample subjected to a temperature gradient. The structural analyses showed the Mg2Si phase as dominant and Bi2Mg3 located at grain boundaries. Bismuth doping enhanced ZT for every dopant concentration. ZT = 0.44 and ZT=0.38 were obtained for 3wt% and 2wt% at 770 K, respectively

    Graphene Oxide Aerosol Deposition and its Influence on Cancer Cells. Preliminary Results

    No full text
    This paper presents the results of the interaction of graphene oxide (GO) on MDA-MB-231 and SW-954 cancer cell lines. The tests were carried out in two variants. In the first one, GO was sprayed on a Petri dish and then, the cancer cell lines were cultured. In the second variant, the cells were covered with an aerosol containing GO. In both variants, cancer cell lines were incubated and tested every 24, 48, and 72 h. After each time period, cell viability and surface morphology were measured. The tests after 72 h showed that coating with GO aerosol caused a reduction in cell viability by 52.7% and 26.4% for MDA-MB-231 and SW-954 cancer cell lines, respectively, with respect to a reference sample (without the influence of GO aerosol). Tests where GO is a culture medium demonstrated a decrease in cell viability by approximately 4.3% compared to a reference sample for both considered cell lines

    Properties of Cold Sprayed Titanium and Titanium Alloy Coatings after Laser Surface Treatment

    No full text
    Additive manufacturing (AM) has seen remarkable development in recent years due to relatively high efficiency of the process. Cold spraying (CS) is a particular method of AM, in which titanium and titanium alloy powders are used. CS is a very competitive technology enabling the deposition of coatings, repairing machine parts, and manufacturing new components. For specific applications, the surface of cold-sprayed materials may require further processing. This paper reports an attempt to employ laser surface treatment (LST) of cold-sprayed coatings on an aluminium alloy substrate. The influence of laser beam interaction time on the coatings’ properties was analysed. The microstructure was investigated and observed employing scanning electron microscopy (SEM). To evaluate residual stress after CS and LST, the sin2ψ technique was used. Investigations were also performed on Vickers hardness, contact angle, and surface roughness. Significant changes in the surface morphology of the coatings and elevated residual stress levels dependent on the laser beam interaction time were observed. Increased Vickers hardness was recorded for titanium alloy Ti6Al4V. LST also led to increased surface hydrophilicity of the modified materials Ti and Ti6Al4V
    corecore