15 research outputs found

    Towards the Design of Evidence-based Mental Health Information Systems: A Preliminary Literature Review

    Get PDF
    Mental disorders belong to a significant and serious disease pattern with an increasing prevalence worldwide. Due to limited health personnel and financial resources, scalability of mental health services and tailored care of individuals are two key barriers for a successful treatment. Mental health information systems (MHIS) are expected to address these barriers and thus, it is of utmost importance to understand the underlying technological rules that guide the design of evidence-based MHIS interventions. However, up till now, there is no systematic literature review on the anatomy of MHIS that quantitatively tests the effects of MHIS service configurations on treatment success. We therefore conducted, as a very first step a preliminary review on MHIS in this research-in-progress. This review has not only the objective to present state-of-the-art on MHIS but also to propose a set of fine-grained evaluation criteria relevant for future work on the design of evidence-based MHIS interventions

    Engagement With a Relaxation and Mindfulness Mobile App Among People With Cancer: Exploratory Analysis of Use Data and Self-Reports From a Randomized Controlled Trial

    Get PDF
    Background Mobile health (mHealth) apps offer unique opportunities to support self-care and behavior change, but poor user engagement limits their effectiveness. This is particularly true for fully automated mHealth apps without any human support. Human support in mHealth apps is associated with better engagement but at the cost of reduced scalability. Objective This work aimed to (1) describe the theory-informed development of a fully automated relaxation and mindfulness app to reduce distress in people with cancer (CanRelax app 2.0), (2) describe engagement with the app on multiple levels within a fully automated randomized controlled trial over 10 weeks, and (3) examine whether engagement was related to user characteristics. Methods The CanRelax app 2.0 was developed in iterative processes involving input from people with cancer and relevant experts. The app includes evidence-based relaxation exercises, personalized weekly coaching sessions with a rule-based conversational agent, 39 self-enactable behavior change techniques, a self-monitoring dashboard with gamification elements, highly tailored reminder notifications, an educational video clip, and personalized in-app letters. For the larger study, German-speaking adults diagnosed with cancer within the last 5 years were recruited via the web in Switzerland, Austria, and Germany. Engagement was analyzed in a sample of 100 study participants with multiple measures on a micro level (completed coaching sessions, relaxation exercises practiced with the app, and feedback on the app) and a macro level (relaxation exercises practiced without the app and self-efficacy toward self-set weekly relaxation goals). Results In week 10, a total of 62% (62/100) of the participants were actively using the CanRelax app 2.0. No associations were identified between engagement and level of distress at baseline, sex assigned at birth, educational attainment, or age. At the micro level, 71.88% (3520/4897) of all relaxation exercises and 714 coaching sessions were completed in the app, and all participants who provided feedback (52/100, 52%) expressed positive app experiences. At the macro level, 28.12% (1377/4897) of relaxation exercises were completed without the app, and participants’ self-efficacy remained stable at a high level. At the same time, participants raised their weekly relaxation goals, which indicates a potential relative increase in self-efficacy. Conclusions The CanRelax app 2.0 achieved promising engagement even though it provided no human support. Fully automated social components might have compensated for the lack of human involvement and should be investigated further. More than one-quarter (1377/4897, 28.12%) of all relaxation exercises were practiced without the app, highlighting the importance of assessing engagement on multiple levels

    Development of a digital biomarker and intervention for subclinical depression: study protocol for a longitudinal waitlist control study

    Full text link
    Background Depression remains a global health problem, with its prevalence rising worldwide. Digital biomarkers are increasingly investigated to initiate and tailor scalable interventions targeting depression. Due to the steady influx of new cases, focusing on treatment alone will not suffice; academics and practitioners need to focus on the prevention of depression (i.e., addressing subclinical depression). Aim With our study, we aim to (i) develop digital biomarkers for subclinical symptoms of depression, (ii) develop digital biomarkers for severity of subclinical depression, and (iii) investigate the efficacy of a digital intervention in reducing symptoms and severity of subclinical depression. Method Participants will interact with the digital intervention BEDDA consisting of a scripted conversational agent, the slow-paced breathing training Breeze, and actionable advice for different symptoms. The intervention comprises 30 daily interactions to be completed in less than 45 days. We will collect self-reports regarding mood, agitation, anhedonia (proximal outcomes; first objective), self-reports regarding depression severity (primary distal outcome; second and third objective), anxiety severity (secondary distal outcome; second and third objective), stress (secondary distal outcome; second and third objective), voice, and breathing. A subsample of 25% of the participants will use smartwatches to record physiological data (e.g., heart-rate, heart-rate variability), which will be used in the analyses for all three objectives. Discussion Digital voice- and breathing-based biomarkers may improve diagnosis, prevention, and care by enabling an unobtrusive and either complementary or alternative assessment to self-reports. Furthermore, our results may advance our understanding of underlying psychophysiological changes in subclinical depression. Our study also provides further evidence regarding the efficacy of standalone digital health interventions to prevent depression. Trial registration Ethics approval was provided by the Ethics Commission of ETH Zurich (EK-2022-N-31) and the study was registered in the ISRCTN registry (Reference number: ISRCTN38841716, Submission date: 20/08/2022)

    OSHDB: a framework for spatio-temporal analysis of OpenStreetMap history data

    Get PDF
    Abstract OpenStreetMap (OSM) is a collaborative project collecting geographical data of the entire world. The level of detail of OSM data and its data quality vary much across different regions and domains. In order to analyse such variations it is often necessary to research the history and evolution of the OSM data. The OpenStreetMap History Database (OSHDB) is a new data analysis tool for spatio-temporal geographical vector data. It is specifically optimized for working with OSM history data on a global scale and allows one to investigate the data evolution and user contributions in a flexible way. Benefits of the OSHDB are for example: to facilitate accessing OSM history data as a research subject and to assess the quality of OSM data by using intrinsic measures. This article describes the requirements of such a system and the resulting technical implementation of the OSHDB: the OSHDB data model and its application programming interface

    stressOUT: Design, Implementation and Evaluation of a Mouse-based Stress Management Service

    Get PDF
    Work-related stress has the potential to increase the risk of chronic stress, major depression and other non-communicable diseases. Organizational stress monitoring usually applies long-term self-report instruments that are designed in a retrospective manner, and thus, is obtrusive, time-consuming and, most important, fails to detect and predict short-term episodes of stress. To ad- dress this shortcoming, we apply design science research with the goal to design, implement and evaluate a stress management service for knowledge workers (stressOUT) that senses the degree of work-related stress solely based on mouse movements. Using stress theory as justificatory knowledge, we implemented stressOUT that tracks mouse movements and perceived stress levels randomly twice a day with the goal to learn features of mouse movements that are related to stress perceptions. Results of a first longitudinal field study indicate that mouse cursor speed is negatively related to perceived stress. Future work is discussed.ISSN:2194-162

    Toward the Design of Evidence-Based Mental Health Information Systems for People With Depression: A Systematic Literature Review and Meta-Analysis

    No full text
    Background: Existing research postulates a variety of components that show an impact on utilization of technology-mediated mental health information systems (MHIS) and treatment outcome. Although researchers assessed the effect of isolated design elements on the results of Web-based interventions and the associations between symptom reduction and use of components across computer and mobile phone platforms, there remains uncertainty with regard to which components of technology-mediated interventions for mental health exert the greatest therapeutic gain. Until now, no studies have presented results on the therapeutic benefit associated with specific service components of technology-mediated MHIS for depression. Objective: This systematic review aims at identifying components of technology-mediated MHIS for patients with depression. Consequently, all randomized controlled trials comparing technology-mediated treatments for depression to either waiting-list control, treatment as usual, or any other form of treatment for depression were reviewed. Updating prior reviews, this study aims to (1) assess the effectiveness of technology-supported interventions for the treatment of depression and (2) add to the debate on what components in technology-mediated MHIS for the treatment of depression should be standard of care. Methods: Systematic searches in MEDLINE, PsycINFO, and the Cochrane Library were conducted. Effect sizes for each comparison between a technology-enabled intervention and a control condition were computed using the standard mean difference (SMD). Chi-square tests were used to test for heterogeneity. Using subgroup analysis, potential sources of heterogeneity were analyzed. Publication bias was examined using visual inspection of funnel plots and Begg’s test. Qualitative data analysis was also used. In an explorative approach, a list of relevant components was extracted from the body of literature by consensus between two researchers. Results: Of 6387 studies initially identified, 45 met all inclusion criteria. Programs analyzed showed a significant trend toward reduced depressive symptoms (SMD –0.58, 95% CI –0.71 to –0.45, P<.001). Heterogeneity was large (I2≥76). A total of 15 components were identified. Conclusions: Technology-mediated MHIS for the treatment of depression has a consistent positive overall effect compared to controls. A total of 15 components have been identified. Further studies are needed to quantify the impact of individual components on treatment effects and to identify further components that are relevant for the design of future technology-mediated interventions for the treatment of depression and other mental disorders.ISSN:1438-887

    MOSS: Mobile Sensing and Support mit einer App depressive Verstimmungen erkennen und Betroffenen helfen

    Full text link
    Major depression is regarded as a significant and serious disease with an increasing prevalence worldwide. However, not all individuals with depressive pressive symptoms seek help for their problems. These untreated "hidden" individuals with depressive symptoms require the design and dissemination of evidence-based, /ow-cost and scalable mental health interventions. Such interventions provided by mobile applications are promising as they have the potential to support people in their everyday life. However, as of today it is unclear how to design mental health applications that are effective and motivating yet non-intrusive. In addressing this problem, the MOSS application is a recent endeavor of a Swiss project team from Universitiitsspital Zurich, ETH Zurich, University of St. Gallen and makora AG, to support people with depressive symptoms. In particular, evidence-based micro-interventions are recommended and triggered by individual characteristics that are derived from self-reports, smartphone interactions and sensor data. After one year of development, the study team now conducts a first empirical study and thus, recruits people affected by depressive symptoms to improve not only the application as such but with it, the delivery of mental health interventions in the long run. Depressionen zeichnen sich durch eine weltweit steigende Prävalenz aus. Gleichzeitig nimmt nur eine Minderheit der Betroffenen zeitnah Hilfe in Anspruch. Mit Hilfe moderner Informationstechniken könnte ein Teil der unbehandelten Betroffenen erreicht werden. Eine potentielle Möglichkeit sind mobile Applikationen, welche Betroffenen zeitnah und zielgerichtet helfen. Wie genau solche Applikationen aufgebaut sein müssen, um Betroffene anzusprechen und zu unterstützen, ist bislang jedoch kaum untersucht. Das Entwicklerteam des Universitätsspitals Zürich, der Eidgenössischen Technischen Hochschule Zürich, der Universität St. Gallen und der makora AG, hat deswegen eine neue Applikation entwickelt, um Menschen mit depressiven Symptomen zu unterstützen. Die Applikation soll dabei in einem ersten Schritt lernen, depressive Symptome sicher zu erkennen. Durch aus evidenzbasierten Ansätzen abgeleitete Interventionen, welche durch die Erfassung von Sensordaten, Eigenangaben und der Interaktion mit dem Mobiltelephon, individuell auf die Betroffenen zugeschnitten sind, soll diesen dann in einem zweiten Schritt zielgerichtet geholfen werden

    Mobile sensing and support for people with depression: a pilot trial in the wild

    Get PDF
    BACKGROUND: Depression is a burdensome, recurring mental health disorder with high prevalence. Even in developed countries, patients have to wait for several months to receive treatment. In many parts of the world there is only one mental health professional for over 200 people. Smartphones are ubiquitous and have a large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms and providing context-sensitive intervention support. OBJECTIVE: The objective of this study is 2-fold, first to explore the detection of daily-life behavior based on sensor information to identify subjects with a clinically meaningful depression level, second to explore the potential of context sensitive intervention delivery to provide in-situ support for people with depressive symptoms. METHODS: A total of 126 adults (age 20-57) were recruited to use the smartphone app Mobile Sensing and Support (MOSS), collecting context-sensitive sensor information and providing just-in-time interventions derived from cognitive behavior therapy. Real-time learning-systems were deployed to adapt to each subject's preferences to optimize recommendations with respect to time, location, and personal preference. Biweekly, participants were asked to complete a self-reported depression survey (PHQ-9) to track symptom progression. Wilcoxon tests were conducted to compare scores before and after intervention. Correlation analysis was used to test the relationship between adherence and change in PHQ-9. One hundred twenty features were constructed based on smartphone usage and sensors including accelerometer, Wifi, and global positioning systems (GPS). Machine-learning models used these features to infer behavior and context for PHQ-9 level prediction and tailored intervention delivery. RESULTS: A total of 36 subjects used MOSS for ≥2 weeks. For subjects with clinical depression (PHQ-9≥11) at baseline and adherence ≥8 weeks (n=12), a significant drop in PHQ-9 was observed (P=.01). This group showed a negative trend between adherence and change in PHQ-9 scores (rho=-.498, P=.099). Binary classification performance for biweekly PHQ-9 samples (n=143), with a cutoff of PHQ-9≥11, based on Random Forest and Support Vector Machine leave-one-out cross validation resulted in 60.1% and 59.1% accuracy, respectively. CONCLUSIONS: Proxies for social and physical behavior derived from smartphone sensor data was successfully deployed to deliver context-sensitive and personalized interventions to people with depressive symptoms. Subjects who used the app for an extended period of time showed significant reduction in self-reported symptom severity. Nonlinear classification models trained on features extracted from smartphone sensor data including Wifi, accelerometer, GPS, and phone use, demonstrated a proof of concept for the detection of depression superior to random classification. While findings of effectiveness must be reproduced in a RCT to proof causation, they pave the way for a new generation of digital health interventions leveraging smartphone sensors to provide context sensitive information for in-situ support and unobtrusive monitoring of critical mental health states

    Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild

    No full text
    Background: Depression is a burdensome, recurring mental health disorder with high prevalence. Even in developed countries, patients have to wait for several months to receive treatment. In many parts of the world there is only one mental health professional for over 200 people. Smartphones are ubiquitous and have a large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms and providing context-sensitive intervention support. Objective: The objective of this study is 2-fold, first to explore the detection of daily-life behavior based on sensor information to identify subjects with a clinically meaningful depression level, second to explore the potential of context sensitive intervention delivery to provide in-situ support for people with depressive symptoms. Methods: A total of 126 adults (age 20-57) were recruited to use the smartphone app Mobile Sensing and Support (MOSS), collecting context-sensitive sensor information and providing just-in-time interventions derived from cognitive behavior therapy. Real-time learning-systems were deployed to adapt to each subject’s preferences to optimize recommendations with respect to time, location, and personal preference. Biweekly, participants were asked to complete a self-reported depression survey (PHQ-9) to track symptom progression. Wilcoxon tests were conducted to compare scores before and after intervention. Correlation analysis was used to test the relationship between adherence and change in PHQ-9. One hundred twenty features were constructed based on smartphone usage and sensors including accelerometer, Wifi, and global positioning systems (GPS). Machine-learning models used these features to infer behavior and context for PHQ-9 level prediction and tailored intervention delivery. Results: A total of 36 subjects used MOSS for ≥2 weeks. For subjects with clinical depression (PHQ-9≥11) at baseline and adherence ≥8 weeks (n=12), a significant drop in PHQ-9 was observed (P=.01). This group showed a negative trend between adherence and change in PHQ-9 scores (rho=−.498, P=.099). Binary classification performance for biweekly PHQ-9 samples (n=143), with a cutoff of PHQ-9≥11, based on Random Forest and Support Vector Machine leave-one-out cross validation resulted in 60.1% and 59.1% accuracy, respectively. Conclusions: Proxies for social and physical behavior derived from smartphone sensor data was successfully deployed to deliver context-sensitive and personalized interventions to people with depressive symptoms. Subjects who used the app for an extended period of time showed significant reduction in self-reported symptom severity. Nonlinear classification models trained on features extracted from smartphone sensor data including Wifi, accelerometer, GPS, and phone use, demonstrated a proof of concept for the detection of depression superior to random classification. While findings of effectiveness must be reproduced in a RCT to proof causation, they pave the way for a new generation of digital health interventions leveraging smartphone sensors to provide context sensitive information for in-situ support and unobtrusive monitoring of critical mental health states.ISSN:2291-522

    Effects of charitable versus monetary incentives on the acceptance of and adherence to a pedometer-based health intervention: study protocol and baseline characteristics of a cluster-randomized controlled trial

    No full text
    Background: Research has so far benefited from the use of pedometers in physical activity interventions. However, when public health institutions (eg, insurance companies) implement pedometer-based interventions in practice, people may refrain from participating due to privacy concerns. This might greatly limit the applicability of such interventions. Financial incentives have been successfully used to influence both health behavior and privacy concerns, and may thus have a beneficial effect on the acceptance of pedometer-based interventions. Objective: This paper presents the design and baseline characteristics of a cluster-randomized controlled trial that seeks to examine the effect of financial incentives on the acceptance of and adherence to a pedometer-based physical activity intervention offered by a health insurance company. Methods: More than 18,000 customers of a large Swiss health insurance company were allocated to a financial incentive, a charitable incentive, or a control group and invited to participate in a health prevention program. Participants used a pedometer to track their daily physical activity over the course of 6 months. A Web-based questionnaire was administered at the beginning and at the end of the intervention and additional data was provided by the insurance company. The primary outcome of the study will be the participation rate, secondary outcomes will be adherence to the prevention program, physical activity, and health status of the participants among others. Results: Baseline characteristics indicate that residence of participants, baseline physical activity, and subjective health should be used as covariates in the statistical analysis of the secondary outcomes of the study. Conclusions: This is the first study in western cultures testing the effectiveness of financial incentives with regard to a pedometer-based health intervention offered by a large health insurer to their customers. Given that the incentives prove to be effective, this study provides the basis for powerful health prevention programs of public health institutions that are easy to implement and can reach large numbers of people in need.ISSN:1929-074
    corecore