116 research outputs found

    Evaluating Los Angeles Homelessness Policy Using System Dynamics Modeling

    Get PDF
    The aim of this dissertation is to advocate policies that can effectively address the challenge of unsheltered homelessness. Using a case study of Los Angeles homelessness, I evaluated policies aimed at easing homelessness using scenario analysis, employing system dynamic (SD) modeling. This study primarily focuses on the evaluation of the Housing First approach and the identification of more effective responses to homelessness. I use a linear regression model to identify key prevention policy levers, including, but not limited to, limits on eviction moratorium, rent stabilization, and affordable housing. Drawing on the information gathered from the regression, the SD model is able to capture the impact of the key factors on homelessness prevention. Combined with the housing sub-systems, the SD model can simulate the behavior of the homeless population under different policy arrangements. The evidence drawn from the statistical model as well as the SD model suggests that when long-term and short-term housing programs are compared, long-term housing programs, such as the permanent supportive housing (PSH) approach, better meet the needs of chronically and mentally ill homeless people in Los Angeles, though they are more costly than short-term housing approaches. In order to mitigate homelessness, the City and County of Los Angeles should: (1) Adopt a homelessness prevention plan that can constrain growth in the number of people evicted from rental units and the number of people discharged from jails and foster families. (2) Continue to employ the PSH approach as its primary means of combating homelessness. (3) Help recipients of long-term support become self-sufficient in order to reduce the cumulative financial burden created by the operation of long-term support programs for homeless people. The SD simulation model results suggest that, if Los Angeles tripled total funding for PSH programs, without adopting any short-term housing approaches, the unsheltered homeless population would likely fall below five hundred by 2030

    Objectives for Stakeholder Engagement in Global Environmental Assessments

    Get PDF
    Global environmental assessments (GEAs) are among the most large-scale, formalized processes for synthesizing knowledge at the science–policy–society interface. The successful engagement of diverse stakeholders in GEAs is often described as a crucial mechanism for increasing their legitimacy, salience and credibility. However, the diversity of perspectives on the more precise objectives for stakeholder engagement remains largely unclear. The aims of this study are to categorize and characterize the diversity of perspectives on objectives for stakeholder engagement in GEAs; to explore differences in perspectives within and between different stakeholder groups and categories; and to test whether the more practical prioritization and selection of objectives in GEAs can be linked to deliberative policy learning as a higher-level rationale for stakeholder engagement. For these purposes, we conduct a grounded theory analysis and a keyword analysis of interview material and official GEA documents relating to two GEAs: UN Environment’s Fifth Global Environment Outlook and the Working Group III contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Based on the analysis, we identify six categories of objectives and present as hypotheses promising ways forward for prioritizing and characterizing objectives for stakeholder engagement in GEAs, as well as potential reasons for the differences between perspectives on objectives. This study draws attention to the need for future GEA processes to have more explicit discussions on the objectives for stakeholder engagement, as well as the importance of moving towards increasingly deliberative and inclusive assessment processes more broadly

    Lateral resolution limit of laser Doppler vibrometer microscopes for the measurement of surface acoustic waves

    Get PDF
    The lateral or transverse resolution of single-point interferometers for vibration measurement is especially critical for microelectromechanical systems (MEMS) vibrating up to the gigahertz range. In this regime, the acoustic wavelengths are typically in the range of the size of the laser focus. Thus, a successful vibration measurement requires distinct knowledge about the lateral resolution limit and its dependencies with instrumentation parameters. In this paper, we derive an analytic approximation formula, which allows for estimation of the systematic measurement deviation of the vibration amplitude and, thus, a definition of the lateral resolution limit of single-point interferometers for vibration measurement. Further, a compensation and an optimum numerical aperture are proposed the reduce the measurement deviation. For this, the model includes a laser-interferometer microscope of Mach-Zehnder type with Gaussian laser beams considering the Gouy effect and wavefront curvature. As a measurement scenario, an unidirectional surface acoustic wave (SAW) is regarded. The theoretic findings have been validated in the experiment with a representative vibration measurement on a SAW filter at 433 MHz with our heterodyne laser-Doppler interferometer with offset-locked semiconductor lasers. The provided formulas help instrument designers and users to choose suitable instrument parameters, especially the numerical aperture of the utilized microscope objective

    Die Decke des Schamanen, die Praxis des Psychotherapeuten -

    Get PDF

    Heterodyne Laser-Interferometrie mittels phasengekoppelter Halbleiterlaser und Absorbanzmodulations-Nanoskopie fĂŒr die Gigahertz-Schwingungsmesstechnik

    Get PDF
    Die heterodyne Interferometrie oder auch Laser-Doppler-Vibrometrie hat sich als kontaktlose, empfindliche und genaue Schwingungsmesstechnik fĂŒr die Mikrosystemtechnik in Industrie und Forschung etabliert. Aufgrund aktueller Entwicklungen insbesondere in der Nachrichtentechnik besteht der Bedarf zur Messung mikroakustischer Schwingungen bis zu 6 GHz bei Subnanometer-Amplituden. Dabei stĂ¶ĂŸt die konventionelle GerĂ€tetechnik der Interferometrie im Hinblick auf das vorteilhafte TrĂ€ger- oder Heterodynverfahren an ihre Grenzen. FĂŒr eine uneingeschrĂ€nkte MessfĂ€higkeit bis 6 GHz ist eine GerĂ€tetechnik erforderlich, die TrĂ€gerfrequenzen von mindestens 6 GHz erzeugen kann. Die konventionelle Technik zur TrĂ€gererzeugung limitiert die Interferometer des Stands der Wissenschaft und eine MessfĂ€higkeit wird nur auf Kosten der ImmunitĂ€t gegen NichtlinearitĂ€ten und der Eindeutigkeit erreicht. Die uneingeschrĂ€nkte MessfĂ€higkeit eines Interferometers erfordert zudem eine ausreichende Ortsauflösung der Schwingformen auf dem Mikrosystem. Mit steigender Schwingungsfrequenz nimmt die akustische WellenlĂ€nge ab, sodass der Messlaserstrahl mit einer Mikroskop-Optik fokussiert werden muss. Die Beugung limitiert dabei die minimale GrĂ¶ĂŸe des Laserfokus und damit die Ortsauflösung, was die MessfĂ€higkeit eines Interferometers fĂŒr Schwingungsfrequenzen im Gigahertz-Bereich ebenfalls einschrĂ€nkt. In dieser Arbeit wurde die TrĂ€gererzeugung mittels phasengekoppelter Laser in einer optoelektronischen Phasenregelschleife theoretisch und experimentell untersucht, um eine MessfĂ€higkeit von heterodynen Interferometern bei mechanischen Schwingungen bis zu 6 GHz zu erzielen. Zudem wurde die Steigerung der Ortsauflösung jenseits der Beugungsgrenze durch Absorbanzmodulations-Nanoskopie in Reflexion theoretisch analysiert. Anhand der systemtheoretischen Beschreibung der optoelektronischen Phasenregelschleife wurden Anforderungen an die Eigenschaften geeigneter Laser und der weiteren Komponenten formuliert. So muss die Regelbandbreite grĂ¶ĂŸer als die summierte Linienbreite der Laser sein. Als wichtige Eigenschaft des Interferometers wurde die erreichbare Schwingungsamplitudenauflösung in AbhĂ€ngigkeit vom Interferometeraufbau, den phasengekoppelten Lasern und der Phasenregelschleife modelliert und numerische Simulationen durchgefĂŒhrt. Es wurde gezeigt, dass der Einfluss des Phasenrauschens der phasengekoppelten Laser mit steigender Schwingungsfrequenz schwindet und daher andere RauschbeitrĂ€ge, wie beispielsweise das Schrotrauschen, die Schwingungsamplitudenauflösung limitieren können. Des Weiteren wurde der Einbruch des nutzbaren TrĂ€gers analytisch beschrieben, der durch den Verlust der gegenseitigen KohĂ€renz bei großen Pfaddifferenzen im Interferometeraufbau entsteht. Die theoretische Modellierung vereinfacht so eine zielgerichtete Auslegung der TrĂ€gererzeugung mittels phasengekoppelter Laser fĂŒr die Interferometrie. Das theoretische, beugungsbegrenzte Ortsauflösungsvermögen eines Interferometers wurde anhand einer akustischen OberflĂ€chenwellen hergeleitet. Es wurde gezeigt, dass die GrĂ¶ĂŸe des Lasermessflecks um mindestens den Faktor 8 geringer sein muss als die akustische WellenlĂ€nge, damit die systematischen Messabweichungen vernachlĂ€ssigbar bleiben. FĂŒr eine Ortsauflösung jenseits der Beugungsgrenze wurde die Absorbanzmodulations-Nanoskopie modelliert, die eine reversible, dynamische Nahfeldblende in einer DĂŒnnschicht auf der MessoberflĂ€che erzeugt. Das Simulationsmodell umfasst die Photokinetik, die mikroskopische Bildgebung und die Beugung an der dynamischen Nahfeldblende. Aus dem Modell wurden analytische NĂ€herungen fĂŒr eine einfache Auslegung eines Absorbanzmodulations-Nanoskops abgeleitet. Insbesondere wird eine Formel zur Steigerung der Ortsauflösung in Beziehung zu Systemparametern hergeleitet, die eine interessante Analogie zu der bekannten Auflösungsformel der STED-Mikroskopie aufweist. Eine Parameterstudie der numerischen Simulation zeigt das Potential einer Auflösungssteigerung auf 1/5 der Beugungsgrenze bei 100 nm Schichtdicke, wenn eine Konzentrationserhöhung oder eine Verbesserung der photophysikalischen Eigenschaften des Photochroms um einen Faktor 2 gegenĂŒber dem Stand der Technik erzielt werden kann. Diese Studie bietet die Grundlage fĂŒr die Dimensionierung und den experimentellen Nachweis des Potentials der Absorbanzmodulations-Nanoskopie in Reflexion. Es wurde der weitere Forschungsbedarf zur Anwendung in der Interferometrie diskutiert. Auf Basis der Erkenntnisse wurde ein heterodynes Laser-Doppler-Vibrometer-Mikroskop mit phasengekoppelten, monolithischen Halbleiterlasern im sichtbaren Spektralbereich ausgelegt und realisiert. Die Bandbreite der Datenerfassung limitiert die Messung auf Schwingungsfrequenzen bis 3 GHz. Die Erzeugung einer TrĂ€gerfrequenz wird durch den Photodetektor auf maximal 10 GHz begrenzt. Die MessfĂ€higkeit des Experimentalaufbaus fĂŒr Hochfrequenz-Mikrosysteme wurde anhand einer Messung auf einem OberflĂ€chenwellen-Filter bei 315 MHz demonstriert. Die erreichte Amplitudenauflösung von ≀ 100 fm/ fĂŒr Schwingungsfrequenzen > 1 GHz ist vom IntensitĂ€tsrauschen der Halbleiterlaser und vom thermischen Rauschen der Elektronik limitiert. Somit kann die TrĂ€gererzeugung mittels phasengekoppelter Halbleiterlaser die heterodyne Interferometrie zur Messung von Schwingungen bis ĂŒber 6 GHz befĂ€higen, wenn das Potential der Absorbanzmodulation zur Steigerung der Ortsauflösung ausgeschöpft wird.Heterodyne interferometry or laser-Doppler vibrometry has established itself as a contactless, sensitive and accurate vibration measurement technique for microsystems technology in industry and research. Due to current developments, especially in communications engineering, there is a demand for the measurement of microacoustic vibrations up to 6 GHz at subnanometer amplitudes. Here, the conventional techniques for interferometry reach their limits, especially with regard to the advantageous heterodyning technique. For absolute measurement capability up to 6 GHz, instrumentation is required that generates carrier frequencies of at least 6\,GHz. Conventional carrier generation limits the state of the research of interferometers and the measurement capability is only achieved at the sacrifice of immunity against non-linearities and unambiguity. The absolute measurement capability of an interferometer also requires sufficient spatial resolution of the vibration patterns on the microsystem. As the vibration frequency increases, the acoustic wavelength decreases, so that the measuring laser beam must be focused with microscope optics. Diffraction limits the minimum size of the laser focus and, thus, the spatial resolution, which also limits the measuring capability of interferometers for vibration frequencies in the gigahertz range. In this thesis, the heterodyning technique via frequency-offset-locked lasers in an optoelectronic phase-locked loop was investigated theoretically and experimentally in order to attain a measurement capability of heterodyne interferometers for mechanical vibrations up to 6 GHz. In addition, the improvement of spatial resolution beyond the diffraction limit by absorbance-modulation nanoscopy in reflection was theoretically analyzed. Based on the system-theoretical description of the optoelectronic phase-locked loop, requirements for the specifications of suitable lasers and the other loop components were derived. For example, the loop bandwidth must exceed the summed linewidth of the lasers. As an important property of the interferometer, the achievable vibration-amplitude resolution was modelled as a function of the interferometer design, the offset-locked lasers and the phase-locked loop and numerical simulations were conducted. It was shown that the influence of the phase noise of the offset-locked lasers decreases with increasing vibration frequency and therefore other noise contributions, such as shot noise, can limit the oscillation amplitude resolution. Furthermore, the collapse of the exploitable carrier, which is caused by the loss of mutual coherence for large path differences in the interferometer setup, was described analytically. The theoretical modeling thus simplifies a purposeful design of the carrier generation using offset-locked lasers for interferometry. The theoretical, diffraction-limited spatial resolution of an interferometer was derived from a surface acoustic wave. It was shown that the size of the laser measurement spot must be at least a factor of 8 smaller than the acoustic wavelength in order to keep the systematic measurement uncertainty negligible. For a spatial resolution beyond the diffraction limit, absorbance-modulation nanoscopy was modelled, which generates a reversible, dynamic near-field aperture in a thin film in contact with the measurement surface. The simulation model includes photokinetics, microscopic imaging and diffraction at the dynamic near-field aperture. Analytical approximations for a simple design of an absorbance-modulation nanoscope were derived from the model. In particular, a formula for improving the spatial resolution in relation to system parameters is derived, which has an interesting analogy to the known resolution formula of STED microscopy. A parameter study of the numerical simulation shows the potential of improving the spatial resolution to 1/5 of the diffraction limit at 100 nm layer thickness, if an increase in concentration or an improvement of the photophysical properties of the photochrome by a factor of 2 compared to the state of the art can be achieved. This study provides the basis for design and experimental proof of the potential of absorbance-modulation nanoscopy in reflection. The issues for further research regarding the application in interferometry were discussed. Based on the results, a heterodyne laser-Doppler-vibrometer microscope with offset-locked, monolithic semiconductor lasers in the visible spectrum was designed and realized. The bandwidth of the data-acquisition system limits the vibration measurement to frequencies up to 3 GHz. The generation of a carrier frequency is possible to more than 10 GHz only limited by the photodetector. The measurement capability of the experimental setup for RF microsystems was demonstrated by measurements on a surface-acoustic-wave filter at 315 MHz. The achieved vibration-amplitude resolution of ≀ 100 fm/ for oscillation frequencies > 1 GHz is limited by the intensity noise of the semiconductor lasers and the thermal noise of the electronics. Thus, heterodyning by means of offset-locked semiconductor lasers can enable heterodyne interferometry to measure oscillation up to more than 6 GHz, if the potential of absorbance-modulation to improve spatial resolution is exploited

    PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes

    Get PDF
    PhenomiR is a comprehensive database of 542 studies reporting deregulation of miRNAs allowing large-scale statistical analysis of miRNA expression changes
    • 

    corecore