279 research outputs found

    The walls of gated communities in Brazil and Turkey: security, separation or status?

    Get PDF
    Gated communities are common types of housing estates found in many countries. They are based on strictly controlled access of people. Houses, and at times high-rise apartment blocks, are built behind a common wall, along private internal streets. Both in Brazil and in Turkey these types of residential neighborhoods can be found mainly on the outskirts of large urban areas. This paper investigates the reasons for the increase of such residential areas, in relation to the two countries urban problems. In Brazil the dominant reason for the proliferation of gated communities, found in the literature and in advertisement of such estates, is security, in view of the countries high crime rates. In Turkey the main reason for a family to choose to live in such residential areas is status and privacy. Although Brazil and Turkey have very different cultural backgrounds, in both countries gated communities are increasingly popular. The attraction of these so-called communities must therefore be analyzed. Are people more vulnerable in large mega-cities? Also, the impact on urban prospects as a whole must be discussed. Socio-cultural and psychological concepts such as territoriality, security, privacy, which can be represented by a pattern of behavior of an individual or group, as based on control of space, are thus touched on in the paper. Conclusions confirm that the reasons for preferences for gated communities are the feeling of belonging to a special place, fear of crime and a sense security and determine decision making of families in their homeownership choices

    Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    Get PDF
    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis virus-induced encephalitis

    New insight into the effects of lead modulation on antioxidant defense mechanism and trace element concentration in rat bone

    Get PDF
    Risks of heavy metals-induced severe bone disorders generate interest to their toxicity. The present study was undertaken to monitor the biochemical and antioxidant status of bone of 30 and 80 days old male Wistar rats exposed to 5 week lead treatment. At the end of study, the rats were sacrificed, their long bone i.e. femur were excised, cleaned of soft tissue, minced and homogenized. Nucleic acid content, alkaline phosphatase, lipid peroxidation, catalase, glutathione S-transferase and superoxide dismutase were determined in bone. In both groups of treated animals lead treatment increased the production of malondialdehyde, while reducing activities of catalase, glutathione S-transferase and superoxide dismutase, indicating that it causes oxidative stress. Parallely with these effects lead significantly reduced the nucleic acid content and the activity of alkaline phosphatase, considered as biomarkers of osteoblast's function, conditions and development of bones. Moreover the concentrations of copper, zinc, iron and sodium were reduced in the excised bones. The present study indicates that the lead induced bone toxicity and its deteriorated development is the consequence of a primary oxidative stress. Our results may be helpful in understanding the modulation of biochemical parameters under lead toxicity

    The Influence of L-Carnitine on Oxidative Modification of LDL In Vitro

    Get PDF
    Owing to their structure and function, low-density lipoproteins (LDLs) are particularly susceptible to the oxidative modifications. To prevent against oxidative modification of LDL, L-carnitine, with endogenous small water-soluble quaternary amine possessing antioxidative properties, was used. The aim of this paper was to prove the in vitro influence of L-carnitine on the degree of oxidative modification of the lipid part (estimated by conjugated dienes, lipid hydroperoxides, and malondialdehyde levels) and the protein part (estimated by dityrosine and tryptophan levels) of LDL native and oxidized by cooper ions. The level of lipophylic LDL antioxidant—α-tocopherol was also measured

    Preconditioning Involves Selective Mitophagy Mediated by Parkin and p62/SQSTM1

    Get PDF
    Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia (sI) in vitro and IPC of hearts to investigate the role of Parkin in mediating cardioprotection ex vivo and in vivo. In HL-1 cells, sI induced Parkin translocation to mitochondria and mitochondrial elimination. IPC induced Parkin translocation to mitochondria in Langendorff-perfused rat hearts and in vivo in mice subjected to regional IPC. Mitochondrial depolarization with an uncoupling agent similarly induced Parkin translocation to mitochondria in cells and Langendorff-perfused rat hearts. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports indicating a role for p62/SQSTM1 in mitophagy, we found that depletion of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to sI. While wild type mice showed p62 translocation to mitochondria and an increase in ubiquitination, Parkin knockout mice exhibited attenuated IPC-induced p62 translocation to the mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection

    Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in Gluconacetobacter diazotrophicus

    Get PDF
    Gluconacetobacter diazotrophicus, an endophyte isolated from sugarcane, is a strict aerobe that fixates N2. This process is catalyzed by nitrogenase and requires copious amounts of ATP. Nitrogenase activity is extremely sensitive to inhibition by oxygen and reactive oxygen species (ROS). However, the elevated oxidative metabolic rates required to sustain biological nitrogen fixation (BNF) may favor an increased production of ROS. Here, we explored this paradox and observed that ROS levels are, in fact, decreased in nitrogen-fixing cells due to the up-regulation of transcript levels of six ROS-detoxifying genes. A cluster analyses based on common expression patterns revealed the existence of a stable cluster with 99.8% similarity made up of the genes encoding the α-subunit of nitrogenase Mo–Fe protein (nifD), superoxide dismutase (sodA) and catalase type E (katE). Finally, nitrogenase activity was inhibited in a dose-dependent manner by paraquat, a redox cycler that increases cellular ROS levels. Our data revealed that ROS can strongly inhibit nitrogenase activity, and G. diazotrophicus alters its redox metabolism during BNF by increasing antioxidant transcript levels resulting in a lower ROS generation. We suggest that careful controlled ROS production during this critical phase is an adaptive mechanism to allow nitrogen fixation

    Hepatoprotektivno djelovanje ekstrakta biljke Calotropis gigantea na oštećenje jetre štakora tetraklormetanom

    Get PDF
    Ethanolic extract (50 %) of stems of Calotropis gigantea R. Br. (Asclepiadaceae) at doses of 250 and 500 mg kg1 were studied for hepatoprotective activity in male Wistar rats with liver damage induced using carbon tetrachloride, 2 mL kg-1 twice a week. The protective effect of C. gigantea extract was compared with the standard drug silymarin. Various biochemical parameters such as aspartate amino transferase (AST), alanine amino transferase (ALT), glutathione (GSH), lipid peroxide (LPO), superoxidedismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were evaluated. The results revealed that the C. gigantea extract significantly decreased AST, ALT (p < 0.001) and lipid peroxide (p < 0.01) levels. The antioxidant parameters GSH, GPx, SOD and catalase levels were increased considerably compared to the levels in groups treated with carbon tetrachloride onlyEtanolni ekstrakt (50 %) stabljika biljke Calotropis gigantea R. Br. (Asclepiadaceae) u dozi 250 i 500 mg kg1 testiran je na hepatoprotektivno djelovanje oštećenje jetre mužjaka Wistar štakora inducirano tetraklormetanom, 2 mL kg1 dva puta tjedno. Zaštitni učinak ekstrakta biljke C. gigantea uspoređivan je sa standarnim lijekom silimarinom. Evaluirani su različiti biokemijski parametri kao što su aspartat amino transferaza (AST), alanin amino transferaza (ALT), glutation (GSH), lipidni peroksidi (LPO), superoksiddismutaza (SOD), glutation peroksidaze (GPx) i katalaza (CAT). Rezultati ukazuju da ekstrakt biljke C. gigantea značajno smanjuje koncentracije AST, ALT (p < 0.001) i lipidnih peroksida (p < 0.01). Koncentracije antioksidativnih parametara GSH, GPx, SOD i katalaze bile su značajno povišene u usporedbi sa skupinom tretiranom samo tetraklormetanom

    Glutathione Deficiency in Cardiac Patients Is Related to the Functional Status and Structural Cardiac Abnormalities

    Get PDF
    International audienceBACKGROUND: The tripeptide glutathione (L-gamma-glutamyl-cysteinyl-glycine) is essential to cell survival, and deficiency in cardiac and systemic glutathione relates to heart failure progression and cardiac remodelling in animal models. Accordingly, we investigated cardiac and blood glutathione levels in patients of different functional classes and with different structural heart diseases. METHODS: Glutathione was measured using standard enzymatic recycling method in venous blood samples obtained from 91 individuals, including 15 healthy volunteers and 76 patients of New York Heart Association (NYHA) functional class I to IV, undergoing cardiac surgery for coronary artery disease, aortic stenosis or terminal cardiomyopathy. Glutathione was also quantified in right atrial appendages obtained at the time of surgery. RESULTS: In atrial tissue, glutathione was severely depleted (-58%) in NYHA class IV patients compared to NYHA class I patients (P = 0.002). In patients with coronary artery disease, this depletion was related to the severity of left ventricular dysfunction (P = 0.006). Compared to healthy controls, blood glutathione was decreased by 21% in NYHA class I patients with structural cardiac disease (P<0.01), and by 40% in symptomatic patients of NYHA class II to IV (P<0.0001). According to the functional NYHA class, significant depletion in blood glutathione occurred before detectable elevation in blood sTNFR1, a marker of symptomatic heart failure severity, as shown by the exponential relationship between these two parameters in the whole cohort of patients (r = 0.88). CONCLUSIONS: This study provides evidence that cardiac and systemic glutathione deficiency is related to the functional status and structural cardiac abnormalities of patients with cardiac diseases. These data also suggest that blood glutathione test may be an interesting new biomarker to detect asymptomatic patients with structural cardiac abnormalities

    The Nrf1 CNC-bZIP Protein Is Regulated by the Proteasome and Activated by Hypoxia

    Get PDF
    BACKGROUND: Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully. PRINCIPAL FINDINGS: We found that proteasomal inhibitors MG-132 and clasto-lactacystin-β-lactone stabilized the protein expression of full-length Nrf1 in both COS7 and WFF2002 cells. Concomitantly, proteasomal inhibition decreased the expression of a smaller, N-terminal Nrf1 fragment, with an approximate molecular weight of 23 kDa. The EpRE-luciferase reporter assays revealed that proteasomal inhibition markedly inhibited the Nrf1 transactivational activity. These results support earlier hypotheses that the 26 S proteasome processes Nrf1 into its active form by removing its inhibitory N-terminal domain anchoring Nrf1 to the endoplasmic reticulum. Immunoprecipitation demonstrated that Nrf1 is ubiquitinated and that proteasomal inhibition increased the degree of Nrf1 ubiquitination. Furthermore, Nrf1 protein had a half-life of approximately 5 hours in COS7 cells. In contrast, hypoxia (1% O(2)) significantly increased the luciferase reporter activity of exogenous Nrf1 protein, while decreasing the protein expression of p65, a shorter form of Nrf1, known to act as a repressor of EpRE-controlled gene expression. Finally, the protein phosphatase inhibitor okadaic acid activated Nrf1 reporter activity, while the latter was repressed by the PKC inhibitor staurosporine. CONCLUSIONS: Collectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status
    corecore