338 research outputs found

    The role of childhood social position in adult type 2 diabetes: Evidence from the English Longitudinal Study of Ageing

    Get PDF
    Copyright @ 2014 Pikhartova et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article has been made available through the Brunel Open Access Publishing Fund.Background: Socioeconomic circumstances in childhood and early adulthood may influence the later onset of chronic disease, although such research is limited for type 2 diabetes and its risk factors at the different stages of life. The main aim of the present study is to examine the role of childhood social position and later inflammatory markers and health behaviours in developing type 2 diabetes at older ages using a pathway analytic approach. Methods. Data on childhood and adult life circumstances of 2,994 men and 4,021 women from English Longitudinal Study of Ageing (ELSA) were used to evaluate their association with diabetes at age 50 years and more. The cases of diabetes were based on having increased blood levels of glycated haemoglobin and/or self-reported medication for diabetes and/or being diagnosed with type 2 diabetes. Father's job when ELSA participants were aged 14 years was used as the measure of childhood social position. Current social characteristics, health behaviours and inflammatory biomarkers were used as potential mediators in the statistical analysis to assess direct and indirect effects of childhood circumstances on diabetes in later life. Results: 12.6 per cent of participants were classified as having diabetes. A disadvantaged social position in childhood, as measured by father's manual occupation, was associated at conventional levels of statistical significance with an increased risk of type 2 diabetes in adulthood, both directly and indirectly through inflammation, adulthood social position and a risk score constructed from adult health behaviours including tobacco smoking and limited physical activity. The direct effect of childhood social position was reduced by mediation analysis (standardised coefficient decreased from 0.089 to 0.043) but remained statistically significant (p = 0.035). All three indirect pathways made a statistically significantly contribution to the overall effect of childhood social position on adulthood type 2 diabetes. Conclusions: Childhood social position influences adult diabetes directly and indirectly through inflammatory markers, adulthood social position and adult health behaviours. © 2014Pikhartova et al.; licensee BioMed Central Ltd.Economic and Social Research Council-funded International Centre for Life Course Studies in Society and Health (RES-596-28-0001)

    A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer's disease

    Get PDF
    We examined baseline and longitudinal associations between plasma neurofilament light (NfL) and total tau (t-tau), and the clinical presentation of Alzheimer's disease (AD). A total of 579 participants (238, normal cognition [NC]; 185, mild cognitive impairment [MCI]; 156, AD dementia) had baseline blood draws; 82% had follow-up evaluations. Plasma samples were analyzed for NfL and t-tau using Simoa technology. Baseline plasma NfL was higher in AD dementia than MCI (standardized mean difference = 0.55, 95% CI: 0.37–0.73) and NC (standardized mean difference = 0.68, 95% CI: 0.49–0.88), corresponded to Clinical Dementia Rating scores (OR = 1.94, 95% CI: 1.35–2.79]), and correlated with all neuropsychological tests (r's = 0.13–0.42). Longitudinally, NfL did not predict diagnostic conversion but predicted decline on 3/10 neuropsychological tests. Baseline plasma t-tau was higher in AD dementia than NC with a small effect (standardized mean difference = 0.33, 95% CI: 0.10–0.57) but not MCI. t-tau did not statistically significant predict any longitudinal outcomes. Plasma NfL may be useful for the detection of AD dementia and monitoring of disease progression. In contrast, there was minimal evidence in support of plasma t-tau

    Investigating the Bidirectional Associations of Adiposity with Sleep Duration in Older Adults: The English Longitudinal Study of Ageing (ELSA)

    Get PDF
    Cross-sectional analyses of adiposity and sleep duration in younger adults suggest that increased adiposity is associated with shorter sleep. Prospective studies have yielded mixed findings, and the direction of this association in older adults is unclear. We examined the cross-sectional and potential bi-directional, prospective associations between adiposity and sleep duration (covariates included demographics, health behaviours, and health problems) in 5,015 respondents from the English Longitudinal Study of Ageing (ELSA), at baseline and follow-up. Following adjustment for covariates, we observed no significant cross-sectional relationship between body mass index (BMI) and sleep duration [(unstandardized) B?=??0.28?minutes, (95% Confidence Intervals (CI)?=??0.012; 0.002), p?=?0.190], or waist circumference (WC) and sleep duration [(unstandardized) B?=??0.10?minutes, (95% CI?=??0.004; 0.001), p?=?0.270]. Prospectively, both baseline BMI [B?=??0.42?minutes, (95% CI?=??0.013; ?0.002), p?=?0.013] and WC [B?=??0.18?minutes, (95% CI?=??0.005; ?0.000), p?=?0.016] were associated with decreased sleep duration at follow-up, independently of covariates. There was, however, no association between baseline sleep duration and change in BMI or WC (p?>?0.05). In older adults, our findings suggested that greater adiposity is associated with decreases in sleep duration over time; however the effect was very small

    Age at Menarche and Its Association with the Metabolic Syndrome and Its Components: Results from the KORA F4 Study

    Get PDF
    OBJECTIVE: The metabolic syndrome is a major public health challenge and identifies persons at risk for diabetes and cardiovascular disease. The aim of this study was to examine the association between age at menarche and the metabolic syndrome (IDF and NCEP ATP III classification) and its components. DESIGN: 1536 women aged 32 to 81 years of the German population based KORA F4 study were investigated. Data was collected by standardized interviews, physical examinations, and whole blood and serum measurements. RESULTS: Young age at menarche was significantly associated with elevated body mass index (BMI), greater waist circumference, higher fasting glucose levels, and 2 hour glucose (oral glucose tolerance test), even after adjusting for the difference between current BMI and BMI at age 25. The significant effect on elevated triglycerides and systolic blood pressure was attenuated after adjustment for the BMI change. Age at menarche was inversely associated with the metabolic syndrome adjusting for age (p-values: <0.001 IDF, 0.003 NCEP classification) and additional potential confounders including lifestyle and reproductive history factors (p-values: 0.001, 0.005). Associations remain significant when additionally controlling for recollected BMI at age 25 (p-values: 0.008, 0.033) or the BMI change since age 25 (p-values: 0.005, 0.022). CONCLUSION: Young age at menarche might play a role in the development of the metabolic syndrome. This association is only partially mediated by weight gain and increased BMI. A history of early menarche may help to identify women at risk for the metabolic syndrome

    Effects of Transmitters and Amyloid-Beta Peptide on Calcium Signals in Rat Cortical Astrocytes: Fura-2AM Measurements and Stochastic Model Simulations

    Get PDF
    BACKGROUND: To better understand the complex molecular level interactions seen in the pathogenesis of Alzheimer's disease, the results of the wet-lab and clinical studies can be complemented by mathematical models. Astrocytes are known to become reactive in Alzheimer's disease and their ionic equilibrium can be disturbed by interaction of the released and accumulated transmitters, such as serotonin, and peptides, including amyloid- peptides (A). We have here studied the effects of small amounts of A25-35 fragments on the transmitter-induced calcium signals in astrocytes by Fura-2AM fluorescence measurements and running simulations of the detected calcium signals. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular calcium signals were measured in cultured rat cortical astrocytes following additions of serotonin and glutamate, or either of these transmitters together with A25-35. A25-35 increased the number of astrocytes responding to glutamate and exceedingly increased the magnitude of the serotonin-induced calcium signals. In addition to A25-35-induced effects, the contribution of intracellular calcium stores to calcium signaling was tested. When using higher stimulus frequency, the subsequent calcium peaks after the initial peak were of lower amplitude. This may indicate inadequate filling of the intracellular calcium stores between the stimuli. In order to reproduce the experimental findings, a stochastic computational model was introduced. The model takes into account the major mechanisms known to be involved in calcium signaling in astrocytes. Model simulations confirm the principal experimental findings and show the variability typical for experimental measurements. CONCLUSIONS/SIGNIFICANCE: Nanomolar A25-35 alone does not cause persistent change in the basal level of calcium in astrocytes. However, even small amounts of A25-35, together with transmitters, can have substantial synergistic effects on intracellular calcium signals. Computational modeling further helps in understanding the mechanisms associated with intracellular calcium oscillations. Modeling the mechanisms is important, as astrocytes have an essential role in regulating the neuronal microenvironment of the central nervous system

    Resistance to MPTP-Neurotoxicity in α-Synuclein Knockout Mice Is Complemented by Human α-Synuclein and Associated with Increased β-Synuclein and Akt Activation

    Get PDF
    Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2′NH2-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes
    corecore