673 research outputs found
Volume independence in large Nc QCD-like gauge theories
Volume independence in large \Nc gauge theories may be viewed as a
generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai
reduction) is a special case of this equivalence. So is temperature
independence in confining phases. In pure Yang-Mills theory, the failure of
volume independence for sufficiently small volumes (at weak coupling) due to
spontaneous breaking of center symmetry, together with its validity above a
critical size, nicely illustrate the symmetry realization conditions which are
both necessary and sufficient for large \Nc orbifold equivalence. The
existence of a minimal size below which volume independence fails also applies
to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)].
However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)],
endowed with periodic boundary conditions, volume independence remains valid
down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and
QCD(AS) have a large \Nc ``orientifold'' equivalence, provided charge
conjugation symmetry is unbroken in the latter theory. Therefore, via a
combined orbifold-orientifold mapping, a well-defined large \Nc equivalence
exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in
arbitrarily small volume. Since asymptotically free gauge theories, such as
QCD(Adj), are much easier to study (analytically or numerically) in small
volume, this equivalence should allow greater understanding of large \Nc QCD
in infinite volume.Comment: 32 pages, 4 figure
The centrality dependence of v2/epsilon: the ideal hydro limit and eta/s
The large elliptic flow observed at RHIC is considered to be evidence for
almost perfect liquid behavior of the strongly coupled quark-gluon plasma
produced in the collisions. In these proceedings we present a two parameter fit
for the centrality dependence of the elliptic flow scaled by the spatial
eccentricity. We show by comparing to viscous hydrodynamical calculations that
these two parameters are in good approximation proportional to the shear
viscosity over entropy ratio and the ideal hydro limit of the ratio v2/epsilon.Comment: 4 pages, 8 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee - final version
without line number
A note on conductivity and charge diffusion in holographic flavour systems
We analyze the charge diffusion and conductivity in a Dp/Dq holographic setup
that is dual to a supersymmetric Yang-Mills theory in p+1 dimensions with N_f<<
N_c flavour degrees of freedom at finite temperature and nonvanishing U(1)
baryon number chemical potential. We provide a new derivation of the results
that generalize the membrane paradigm to the present context. We perform a
numerical analysis in the particular case of the D3/D7 flavor system. The
results obtained support the validity of the Einstein relation at finite
chemical potential.Comment: 15 pages, 3 figures, v2 with minor correction
The ultraviolet limit and sum rule for the shear correlator in hot Yang-Mills theory
We determine a next-to-leading order result for the correlator of the shear
stress operator in high-temperature Yang-Mills theory. The computation is
performed via an ultraviolet expansion, valid in the limit of small distances
or large momenta, and the result is used for writing operator product
expansions for the Euclidean momentum and coordinate space correlators as well
as for the Minkowskian spectral density. In addition, our results enable us to
confirm and refine a shear sum rule originally derived by Romatschke, Son and
Meyer.Comment: 16 pages, 2 figures. v2: small clarifications, one reference added,
published versio
Subjective factors and psychological characteristics of students’ selfrealization as a reflection of their psychological well-being in the process of university learning
The purpose of this research is to determine psychological conditions and signs of students’ selfrealization in university training. Psychological survey methods were used in this research. Students’ needmotivational features, meaning-setting characteristics, self-attitude properties and purposelife orientations were scrutinized. As a result the connection between the level of students’ selfrealization and positive motivation of learning, as well as integrity and meaning consistency of their Selfconcept is stated. The conclusion is made on necessity to apply individual-oriented forms of teachin
The effect of higher derivative correction on and conductivities in STU model
In this paper we study the ratio of shear viscosity to entropy, electrical
and thermal conductivities for the R-charged black hole in STU model. We
generalize previous works to the case of a black hole with three different
charges. Actually we use diffusion constant to obtain ratio of shear viscosity
to entropy. By applying the thermodynamical stability we recover previous
results. Also we investigate the effect of higher derivative corrections.Comment: revised versio
Higher Derivative Corrections to Locally Black Brane Metrics
In this paper we generalize the construction of locally boosted black brane
space time to higher derivative gravities. We consider the Gauss-Bonnet term
(with coefficient ) as a toy example. We find the solution to the
corrected Einstein equations to first order in the boundary
derivative expansion. This allows us to find the corrections to the
boundary stress tensor in the presence of the Gauss-Bonnet term in the bulk
action. We therefore obtain the ratio of shear viscosity to entropy which
agrees with other methods of computation in the literature.Comment: 0+17 page
Transport coefficients, membrane couplings and universality at extremality
We present an efficient method for computing the zero frequency limit of
transport coefficients in strongly coupled field theories described
holographically by higher derivative gravity theories. Hydrodynamic parameters
such as shear viscosity and conductivity can be obtained by computing residues
of poles of the off-shell lagrangian density. We clarify in which sense these
coefficients can be thought of as effective couplings at the horizon, and
present analytic, Wald-like formulae for the shear viscosity and conductivity
in a large class of general higher derivative lagrangians. We show how to apply
our methods to systems at zero temperature but finite chemical potential. Our
results imply that such theories satisfy universally in the
Einstein-Maxwell sector. Likewise, the zero frequency limit of the real part of
the conductivity for such systems is shown to be universally zero, and we
conjecture that higher derivative corrections in this sector do not modify this
result to all orders in perturbation theory.Comment: 29 pages, v2: Small text changes for clarity, typos correcte
Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma
We study holographic RG flow of the shear viscosity tensor of anisotropic,
strongly coupled N=4 super-Yang-Mills plasma by using its type IIB supergravity
dual in anisotropic bulk spacetime. We find that the shear viscosity tensor has
three independent components in the anisotropic bulk spacetime away from the
boundary, and one of the components has a non-trivial RG flow while the other
two have a trivial one. For the component of the shear viscosity tensor with
non-trivial RG flow, we derive its RG flow equation, and solve the equation
analytically to second order in the anisotropy parameter 'a'. We derive the RG
equation using the equation of motion, holographic Wilsonian RG method, and
Kubo's formula. All methods give the same result. Solving the equation, we find
that the ratio of the component of the shear viscosity tensor to entropy
density 'eta/s' flows from above '1/4pi' at the horizon (IR) to below '1/4pi'
at the boundary (UV) where it violates the holographic shear viscosity
(Kovtun-Son-Starinets) bound and where it agrees with the other longitudinal
component.Comment: 17 pages, 2 figures, slight change on the title, more background
material added, references added, accepted for publication in JHE
Holographic current correlators at finite coupling and scattering off a supersymmetric plasma
By studying the effect of the order(\alpha'^3) string theory corrections to
type IIB supergravity, including those corrections involving the Ramond-Ramond
five-form field strength, we obtain the corrected equations of motion of an
Abelian perturbation of the AdS_5-Schwarzschild black hole. We then use the
gauge theory/string theory duality to examine the coupling-constant dependence
of vector current correlators associated to a gauged U(1) sub-group of the
global R-symmetry group of strongly-coupled N=4 supersymmetric Yang-Mills
theory at finite temperature. The corrections induce a set of higher-derivative
operators for the U(1) gauge field, but their effect is highly suppressed. We
thus find that the order(\alpha'^3) corrections affect the vector correlators
only indirectly, through the corrected metric. We apply our results to
investigate scattering off a supersymmetric Yang-Mills plasma at low and high
energy. In the latter regime, where Deep Inelastic Scattering is expected to
occur, we find an enhancement of the plasma structure functions in comparison
with the infinite 't Hooft coupling result.Comment: 38 pages, 6 figures, minor clarifications added, typos corrected,
references adde
- …