177 research outputs found

    Threonine 180 Is Required for G-protein-coupled Receptor Kinase 3- and β-Arrestin 2-mediated Desensitization of the µ-Opioid Receptor in Xenopus Oocytes

    Get PDF
    To determine the sites in the µ-opioid receptor (MOR) critical for agonist-dependent desensitization, we constructed and coexpressed MORs lacking potential phosphorylation sites along with G-protein activated inwardly rectifying potassium channels composed of Kir3.1 and Kir3.4 subunits in Xenopus oocytes. Activation of MOR by the stable enkephalin analogue, [D-Ala2,MePhe4,Glyol5]enkephalin, led to homologous MOR desensitization in oocytes coexpressing both G-protein-coupled receptor kinase 3 (GRK3) and beta -arrestin 2 (arr3). Coexpression with either GRK3 or arr3 individually did not significantly enhance desensitization of responses evoked by wild type MOR activation. Mutation of serine or threonine residues to alanines in the putative third cytoplasmic loop and truncation of the C-terminal tail did not block GRK/arr3-mediated desensitization of MOR. Instead, alanine substitution of a single threonine in the second cytoplasmic loop to produce MOR(T180A) was sufficient to block homologous desensitization. The insensitivity of MOR(T180A) might have resulted either from a block of arrestin activation or arrestin binding to MOR. To distinguish between these alternatives, we expressed a dominant positive arrestin, arr2(R169E), that desensitizes G protein-coupled receptors in an agonist-dependent but phosphorylation-independent manner. arr2(R169E) produced robust desensitization of MOR and MOR(T180A) in the absence of GRK3 coexpression. These results demonstrate that the T180A mutation probably blocks GRK3- and arr3-mediated desensitization of MOR by preventing a critical agonist-dependent receptor phosphorylation and suggest a novel GRK3 site of regulation not yet described for other G-protein-coupled receptors

    Atrial arrhythmogenesis in wild-type and Scn5a+/Δ murine hearts modelling LQT3 syndrome

    Get PDF
    Long QT(3) (LQT3) syndrome is associated with abnormal repolarisation kinetics, prolonged action potential durations (APD) and QT intervals and may lead to life-threatening ventricular arrhythmias. However, there have been few physiological studies of its effects on atrial electrophysiology. Programmed electrical stimulation and burst pacing induced atrial arrhythmic episodes in 16 out of 16 (16/16) wild-type (WT) and 7/16 genetically modified Scn5a+/Δ (KPQ) Langendorff-perfused murine hearts modelling LQT3 (P < 0.001 for both), and in 14/16 WT and 1/16 KPQ hearts (P < 0.001 for both; Fisher’s exact test), respectively. The arrhythmogenic WT hearts had significantly larger positive critical intervals (CI), given by the difference between atrial effective refractory periods (AERPs) and action potential durations at 90% recovery (APD90), compared to KPQ hearts (8.1 and 3.2 ms, respectively, P < 0.001). Flecainide prevented atrial arrhythmias in all arrhythmogenic WT (P < 0.001) and KPQ hearts (P < 0.05). It prolonged the AERP to a larger extent than it did the APD90 in both WT and KPQ groups, giving negative CIs. Quinidine similarly exerted anti-arrhythmic effects, prolonged AERP over corresponding APD90 in both WT and KPQ groups. These findings, thus, demonstrate, for the first time, inhibitory effects of the KPQ mutation on atrial arrhythmogenesis and its modification by flecainide and quinidine. They attribute these findings to differences in the CI between WT and mutant hearts, in the presence or absence of these drugs. Thus, prolongation of APD90 over AERP gave positive CI values and increased atrial arrhythmogenicity whereas lengthening of AERP over APD90 reduced such CI values and produced the opposite effect

    Phase IIb, Randomized, Double-Blind Trial of GC4419 Versus Placebo to Reduce Severe Oral Mucositis Due to Concurrent Radiotherapy and Cisplatin For Head and Neck Cancer

    Get PDF
    PURPOSE: Oral mucositis (OM) remains a common, debilitating toxicity of radiation therapy (RT) for head and neck cancer. The goal of this phase IIb, multi-institutional, randomized, double-blind trial was to compare the efficacy and safety of GC4419, a superoxide dismutase mimetic, with placebo to reduce the duration, incidence, and severity of severe OM (SOM). PATIENTS AND METHODS: A total of 223 patients (from 44 institutions) with locally advanced oral cavity or oropharynx cancer planned to be treated with definitive or postoperative intensity-modulated RT (IMRT; 60 to 72 Gy [≥ 50 Gy to two or more oral sites]) plus cisplatin (weekly or every 3 weeks) were randomly assigned to receive 30 mg (n = 73) or 90 mg (n = 76) of GC4419 or to receive placebo (n = 74) by 60-minute intravenous administration before each IMRT fraction. WHO grade of OM was assessed biweekly during IMRT and then weekly for up to 8 weeks after IMRT. The primary endpoint was duration of SOM tested for each active dose level versus placebo (intent-to-treat population, two-sided α of .05). The National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03, was used for adverse event grading. RESULTS: Baseline patient and tumor characteristics as well as treatment delivery were balanced. With 90 mg GC4419 versus placebo, SOM duration was significantly reduced (P = .024; median, 1.5 v 19 days). SOM incidence (43% v 65%; P = .009) and severity (grade 4 incidence, 16% v 30%; P = .045) also were improved. Intermediate improvements were seen with the 30-mg dose. Safety was comparable across arms, with no significant GC4419-specific toxicity nor increase of known toxicities of IMRT plus cisplatin. The 2-year follow-up for tumor outcomes is ongoing. CONCLUSION: GC4419 at a dose of 90 mg produced a significant, clinically meaningful reduction of SOM duration, incidence, and severity with acceptable safety

    Association between Regulator of G Protein Signaling 9–2 and Body Weight

    Get PDF
    Regulator of G protein signaling 9–2 (RGS9–2) is a protein that is highly enriched in the striatum, a brain region that mediates motivation, movement and reward responses. We identified a naturally occurring 5 nucleotide deletion polymorphism in the human RGS9 gene and found that the mean body mass index (BMI) of individuals with the deletion was significantly higher than those without. A splicing reporter minigene assay demonstrated that the deletion had the potential to significantly decrease the levels of correctly spliced RGS9 gene product. We measured the weights of rats after virally transduced overexpression of RGS9–2 or the structurally related RGS proteins, RGS7, or RGS11, in the nucleus accumbens (NAc) and observed a reduction in body weight after overexpression of RGS9–2 but not RGS7 or 11. Conversely, we found that the RGS9 knockout mice were heavier than their wild-type littermates and had significantly higher percentages of abdominal fat. The constituent adipocytes were found to have a mean cross-sectional area that was more than double that of corresponding cells from wild-type mice. However, food intake and locomotion were not significantly different between the two strains. These studies with humans, rats and mice implicate RGS9–2 as a factor in regulating body weight.National Institute of Mental Health (U.S.) (R41MH78570 award)National Center for Research Resources (U.S.) (Rhode Island IDeA Network of Biomedical Research Excellence (RI-INBRE) Award P20RR016457-10

    Structure Studies of 13Be^{13}\text{Be} from the 12^{12}Be(d,p) reaction in inverse kinematics on a solid deuteron target

    Full text link
    The low-lying structure of 13^{13}Be has remained an enigma for decades. Despite numerous experimental and theoretical studies, large inconsistencies remain. Being both unbound, and one neutron away from 14^{14}Be, the heaviest bound beryllium nucleus, 13^{13}Be is difficult to study through simple reactions with weak radioactive ion beams or more complex reactions with stable-ion beams. Here, we present the results of a study using the 12^{12}Be(d,p)13^{13}Be reaction in inverse kinematics using a 9.5~MeV per nucleon 12^{12}Be beam from the ISAC-II facility. The solid deuteron target of IRIS was used to achieve an increased areal thickness compared to conventional deuterated polyethylene targets. The Q-value spectrum below -4.4~MeV was analyzed using a Bayesian method with GEANT4 simulations. A three-point angular distribution with the same Q-value gate was fit with a mixture of ss- and pp-wave, ss- and dd-wave, or pure pp-wave transfer. The Q-value spectrum was also compared with GEANT simulations obtained using the energies and widths of states reported in four previous works. It was found that our results are incompatible with works that revealed a wide 5/2+5/2^+ resonance but shows better agreement with ones that reported a narrower width.Comment: 10 pages, 5 figure

    Atrial arrhythmogenicity in aged Scn5a+/∆KPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction

    Get PDF
    Recent studies have reported that human mutations in Nav1.5 predispose to early age onset atrial arrhythmia. The present experiments accordingly assess atrial arrhythmogenicity in aging Scn5a+/∆KPQ mice modeling long QT3 syndrome in relationship to cardiac Na+ channel, Nav1.5, expression. Atrial electrophysiological properties in isolated Langendorff-perfused hearts from 3- and 12-month-old wild type (WT), and Scn5a+/∆KPQ mice were assessed using programmed electrical stimulation and their Nav1.5 expression assessed by Western blot. Cardiac conduction properties were assessed electrocardiographically in intact anesthetized animals. Monophasic action potential recordings demonstrated increased atrial arrhythmogenicity specifically in aged Scn5a+/ΔKPQ hearts. These showed greater action potential duration/refractory period ratios but lower atrial Nav1.5 expression levels than aged WT mice. Atrial Nav1.5 levels were higher in young Scn5a+/ΔKPQ than young WT. These levels increased with age in WT but not Scn5a+/ΔKPQ. Both young and aged Scn5a+/ΔKPQ mice showed lower heart rates and longer PR intervals than their WT counterparts. Young Scn5a+/ΔKPQ mice showed longer QT and QTc intervals than young WT. Aged Scn5a+/ΔKPQ showed longer QRS durations than aged WT. PR intervals were prolonged and QT intervals were shortened in young relative to aged WT. In contrast, ECG parameters were similar between young and aged Scn5a+/ΔKPQ. Aged murine Scn5a+/ΔKPQ hearts thus exhibit an increased atrial arrhythmogenicity. The differing Nav1.5 expression and electrocardiographic indicators of slowed cardiac conduction between Scn5a+/ΔKPQ and WT, which show further variations associated with aging, may contribute toward atrial arrhythmia in aged Scn5a+/ΔKPQ hearts

    Inhibition of G Protein-Activated Inwardly Rectifying K+ Channels by Different Classes of Antidepressants

    Get PDF
    Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K+ (GIRK, Kir3) channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects
    corecore