1,028 research outputs found

    Near-infrared molecular imaging of tumors via chemokine receptors CXCR4 and CXCR7

    Get PDF
    The chemokine CXCL12/SDF-1 and its receptors CXCR4 and CXCR7 play a major role in tumor invasion, proliferation and metastasis. Since both receptors are overexpressed on distinct tumor cells and on the tumor vasculature, we evaluated their potential as targets for detection of cancers by molecular imaging. We synthesized conjugates of CXCL12 and the near-infrared (NIR) fluorescent dye IRDye®800CW, tested their selectivity, sensitivity and biological activity in vitro and their feasibility to visualize tumors in vivo. Purified CXCL12-conjugates detected in vitro as low as 500 A764 human glioma cells or MCF-7 breast cancer cells that express CXCR7 alone or together with CXCR4. Binding was time- and concentration-dependent, and the label could be competitively displaced by the native peptide. Control conjugates with bovine serum albumin or lactalbumin failed to label the cells. In mice, the conjugate distributed rapidly. After 1–92 h, subcutaneous tumors of human MCF-7 and A764 cells in immunodeficient mice were detected with high sensitivity. Background was observed in particular in liver within the first 24 h, but also skull and hind limbs yielded some background. Overall, fluorescent CXCL12-conjugates are sensitive and selective probes to detect solid and metastatic tumors by targeting tumor cells and tumor vasculature

    Fluctuation induces evolutionary branching in a modeled microbial ecosystem

    Get PDF
    The impact of environmental fluctuation on species diversity is studied with a model of the evolutionary ecology of microorganisms. We show that environmental fluctuation induces evolutionary branching and assures the consequential coexistence of multiple species. Pairwise invasibility analysis is applied to illustrate the speciation process. We also discuss how fluctuation affects species diversity.Comment: 4 pages, 4 figures. Submitted to Physical Review Letter

    Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang

    Get PDF
    This study provides further evidence for the impact of the aromas of plant essential oils on aspects of cognition and mood in healthy participants. One hundred and forty-four volunteers were randomly assigned to conditions of ylang-ylang aroma, peppermint aroma, or no aroma control. Cognitive performance was assessed using the Cognitive Drug Research computerized assessment battery, with mood scales completed before and after cognitive testing. The analysis of the data revealed significant differences between conditions on a number of the factors underpinning the tests that constitute the battery. Peppermint was found to enhance memory whereas ylang-ylang impaired it, and lengthened processing speed. In terms of subjective mood peppermint increased alertness and ylang-ylang decreased it, but significantly increased calmness. These results provide support for the contention that the aromas of essential oils can produce significant and idiosyncratic effects on both subjective and objective assessments of aspects of human behavior. They are discussed with reference to possible pharmacological and psychological modes of influence

    Sub- and above barrier fusion of loosely bound 6^6Li with 28^{28}Si

    Full text link
    Fusion excitation functions are measured for the system 6^6Li+28^{28}Si using the characteristic γ\gamma-ray method, encompassing both the sub-barrier and above barrier regions, viz., ElabE_{lab}= 7-24 MeV. Two separate experiments were performed, one for the above barrier region (ElabE_{lab}= 11-24 MeV) and another for the below barrier region (ElabE_{lab}= 7-10 MeV). The results were compared with our previously measured fusion cross section for the 7^7Li+28^{28}Si system. We observed enhancement of fusion cross section at sub-barrier regions for both 6^6Li and 7^7Li, but yield was substantially larger for 6^6Li. However, for well above barrier regions, similar type of suppression was identified for both the systems.Comment: 8 pages, 6 figures, as accepted for publication in Eur.Phys.J.

    Elastic scattering and breakup of 17^F at 10 MeV/nucleon

    Full text link
    Angular distributions of fluorine and oxygen produced from 170 MeV 17^F incident on 208^Pb were measured. The elastic scattering data are in good agreement with optical model calculations using a double-folding potential and parameters similar to those obtained from 16^O+208^Pb. A large yield of oxygen was observed near \theta_lab=36 deg. It is reproduced fairly well by a calculation of the (17^F,16^O) breakup, which is dominated by one-proton stripping reactions. The discrepancy between our previous coincidence measurement and theoretical predictions was resolved by including core absorption in the present calculation.Comment: 9 pages, 5 figure

    Formin 1-Isoform IV Deficient Cells Exhibit Defects in Cell Spreading and Focal Adhesion Formation

    Get PDF
    Background: Regulation of the cytoskeleton is a central feature of cell migration. The formin family of proteins controls the rate of actin nucleation at its barbed end. Thus, formins are predicted to contribute to several important cell processes such as locomotion, membrane ruffling, vesicle endocytosis, and stress fiber formation and disassociation. Methodology/Principal Findings: In this study we investigated the functional role of Formin1-isoform4 (Fmn1-IV) by using genetically null primary cells that displayed augmented protrusive behaviour during wound healing and delayed cell spreading. Cells deficient of Fmn1-IV also showed reduced efficiency of focal adhesion formation. Additionally, we generated an enhanced green fluorescence protein (EGFP)-fused Fmn1-IV knock-in mouse to monitor the endogenous subcellular localization of Fmn1-IV. Its localization was found within the cytoplasm and along microtubules, yet it was largely excluded from adherens junctions. Conclusions/Significance: It was determined that Fmn1-IV, as an actin nucleator, contributes to protrusion of the cell’s leading edge and focal adhesion formation, thus contributing to cell motility

    Magnetized Particle Capture Cross Section for Braneworld Black Hole

    Full text link
    Capture cross section of magnetized particle (with nonzero magnetic moment) by braneworld black hole in uniform magnetic field is considered. The magnetic moment of particle was chosen as it was done by \citet{rs99} and for the simplicity particle with zero electric charge is chosen. It is shown that the spin of particle as well as the brane parameter are to sustain the stability of particles circularly orbiting around the black hole in braneworld i.e. spin of particles and brane parameter try to prevent the capture by black hole.Comment: 7 pages, 4 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore