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Growth-dependent drug susceptibility can prevent or
enhance spatial expansion of a bacterial population

Patrick Sinclair, Martín Carballo-Pacheco, and Rosalind J Allen

School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait
Road, Edinburgh, EH9 3FD, United Kingdom

Abstract

As a population wave expands, organisms at the tip typically experience plentiful nutrients
while those behind the front become nutrient-depleted. If the environment also contains a
gradient of some inhibitor (e.g. a toxic drug), a tradeoff exists: the nutrient-rich tip is more
exposed to the inhibitor, while the nutrient-starved region behind the front is less exposed.
Here we show that this can lead to complex dynamics when the organism’s response to the
inhibitory substance is coupled to nutrient availability. We model a bacterial population
which expands in a spatial gradient of antibiotic, under conditions where either fast-growing
bacteria at the wave’s tip, or slow-growing, resource-limited bacteria behind the front are
more susceptible to the antibiotic. We find that growth-rate dependent susceptibility can
have strong effects on the dynamics of the expanding population. If slow-growing bacteria are
more susceptible, the population wave advances far into the inhibitory zone, leaving a trail of
dead bacteria in its wake. In contrast, if fast-growing bacteria are more susceptible, the wave
is blocked at a much lower concentration of antibiotic, but a large population of live bacteria
remains behind the front. Our results may contribute to understanding the efficacy of different
antimicrobials for spatially structured microbial populations such as biofilms, as well as the
dynamics of ecological population expansions more generally.

Spatial gradients of environmental parameters play a central role in the ecology and evolution of
both macro- and microorganisms [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. A particularly important scenario
is one in which a population wave is halted in its spatial expansion by an increasingly challenging
environment, to which it must evolve resistance in order to advance further. Population genetic
theory has shown that the sharpness of the boundary of the region colonised (the species’ range)
[11] depends on a complex interplay between flow of genetic variants from the main body of the
population to its edges [12, 13], evolution of genetic variance within the population[14], genetic drift
[15, 16, 17] and the potential for interspecific competition [18]. In the specific context of a bacterial
population which expands in a spatial gradient of an antimicrobial chemical (e.g. an antibiotic),
experiments [19, 20] and theory [21, 22, 23, 24] show that the antimicrobial gradient can speed up
the evolution of resistance; further theoretical work suggests that this depends both on the nature
of the mutational pathway to resistance [23] and on the balance between the bacterial migration
and mutation rates [25, 22, 24]. Similar spatial effects have been observed in the emergence of
resistance to cancer therapy [26, 27].

As a population wave expands in an environment that contains a gradient of an inhibitory sub-
stance, individuals within the population experience changes in both inhibitor and nutrient abun-
dance. At the tip of the wave, organisms are exposed to high levels of the inhibitor, but nutrients are
typically abundant because the population density is low. In contrast, behind the wave front, the
environment is less inhibitory but organisms can become nutrient-limited because the population
density is high. This scenario is especially interesting if a coupling exists between the organism’s
susceptibility to the inhibitor and the nutrient availability. For example, for bacteria exposed to
antibiotics, it is known that nutrient conditions can strongly influence susceptibility to antibiotics.
For most antibiotics, fast-growing Escherichia coli (on rich nutrient media) are more susceptible
than slow-growing E. coli (on poor nutrient media) [28, 29, 30, 31, 32]. For some antibiotics, how-
ever, the opposite is true: slow-growing bacteria are more susceptible [29, 31, 30, 33]. Recent work
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by Greulich et al. suggested that antibiotics within the same target class can be more effective
on fast- or slow-growing bacteria depending on molecular parameters such as target-binding and
transport rates [33, 34]. For Pseudomonas aeruginosa growing in surface-associated biofilms, it is
known that antibiotics such as ciprofloxacin, tetracycline and tobramycin are more active against
the fast-growing subpopulation at the biofilm surface [35], while membrane-targeting antimicrobials
such as the peptide colistin, ethylenediaminetetraacetic acid (EDTA) and sodium dodecyl sulfate
(SDS) are more effective against the non-growing subpopulation within the biofilm [35, 36, 37]. It
remains unclear whether this classification of antimicrobials according to their growth-rate depen-
dence is linked to the more traditional classification into bactericidal drugs, which cause bacterial
death, and bacteriostatic drugs, which inhibit bacterial growth without killing [38].

Within a bacterial population wave, growth-dependent susceptibility implies that fast-growing
bacteria at the wave tip may show different susceptibility to antibiotics than slow-growing bacteria
behind the wave front – in other words, there may be a coupling between the ability of the
population to invade the antibiotic gradient and nutrient limitation within the population wave.
Here, we investigate the implications of such a coupling, by modelling the spread of a bacterial
population wave in a gradient of both bacteriostatic and bactericidal antibiotics, under conditions
where either fast-growing or slow-growing bacteria are more susceptible to the antibiotic. Our
simulations suggest significant differences in outcome in these two cases. If the fast-growing bacteria
are more susceptible, the population wave stops at a low concentration of antibiotic, but, for a
bactericidal antibiotic, many bacteria remain alive behind the front. If the slow-growing bacteria
are more susceptible, the wave spreads much further, but may trail a wake of dead bacteria behind
it. Our work reveals basic principles that may have implications for treating bacterial infections
growing in spatially structured environments, such as biofilms.

Model

To model the expansion of a bacterial population in a spatial antibiotic gradient, we follow the work
of Greulich et al. [10, 23] by discretising space as a chain of L microhabitats (Figure 1), each of
which can contain a different concentration of antibiotic. We assume that bacteria can proliferate
within each microhabitat, consuming nutrient, can migrate to neighbouring microhabitats and can
die (if the antibiotic is bactericidal). The variables in our model are the number Ni of bacteria
and the concentration si of nutrient, for each microhabitat i ∈ [0, L]. The antibiotic concentration
ci remains fixed for each microhabitat, as does the migration rate m (which is assumed to be the
same for all microhabitats).

For a given microhabitat, the local bacterial growth rate bi depends on both the local nutrient
concentration si and the local antibiotic concentration ci:

bi = φ(ci, βi)× g(si). (1)

In Eq. (1), g(si) is a Monod function describing the nutrient-concentration dependence of the
growth rate [39]:

g(si) =
si

si +K
, (2)

K being the Monod constant. The function g increases with nutrient concentration si and sat-
urates for si � K. The ‘pharmacodynamic function’ φ(ci, βi) in Eq. (1) describes bacterial
inhibition by the antibiotic, with a minimal inhibitory concentration (MIC) βi. Importantly,
growth-dependent susceptibility means that the MIC is nutrient-dependent: βi depends on the lo-
cal nutrient-dependent growth function g(si) (Figure 1b). In this work, we consider two contrasting
cases: ‘fast-growth targeting antibiotics (FGTA)’, for which fast-growing bacteria are more suscep-
tible, and ‘slow-growth targeting antibiotics’, for which slow-growing bacteria are more susceptible.
In both cases (and inspired by [33]), we assume a linear relation between MIC and growth rate:
for the FGTA, the MIC decreases with growth rate:

βFGTA
i = 10− 9

g(si)

gmax
, (3)
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Figure 1: (a) Illustration of the model. We consider a chain of interconnected microhabitats,
labelled by an index i = 0 to L. The concentration of antibiotic can be different in each mi-
crohabitat (and is fixed throughout the simulation). We simulate the dynamics of bacteria and
nutrient within each microhabitat. As the bacteria multiply, the nutrient is consumed, which alters
the growth rate of the bacteria. Growth-dependent susceptibility means that this in turn affects
the minimal inhibitory concentration (MIC). Within the population, bacteria at the edge of the
expanding population wave experience plentiful nutrients and grow fast, whereas those behind the
wave are nutrient-depleted and grow slowly. (b) Growth-dependent susceptibility as implemented
in our model. The MIC is plotted versus the Monod growth function g(s) (Eq. 2), which depends
on the nutrient concentration s, for the three types of antibiotics studied: fast-growth targeting
antibiotics (FGTA), growth-independent antibiotics (GIA) and slow-growth targeting antibiotics
(SGTA).

while for the SGTA the MIC increases with growth rate

βSGTA
i = 1 + 9

g(si)

gmax
(4)

(see figure 1 as well as the note on units and parameters below). We also model the situation
where the MIC is independent of growth rate, which we term ‘growth-independent antibiotic’, or
GIA; here we set βGIA = 5.

To model a bacteriostatic antibiotic, we assume a quadratic form for the pharmacodynamic function
φ(ci, βi) [23]:

φ(ci, βi) =


1−

(
ci
βi

)2

if
ci
βi
< 1,

0 if
ci
βi
≥ 1.

(5)

For a bactericidal antibiotic, we use the following pharmacodynamic function:

φ(ci, βi) = 1− 6 (ci/βi(g))
2

5 + (ci/βi(g))
2 , (6)

corresponding to the general function proposed by Regoes et al. [40] with parameters κ = 2,
ψmax = 1 and ψmin = −5. If the local antibiotic concentration ci < βi, Eq. (6) is used as input to
Eq. (1) to compute the local growth rate. For higher concentrations of the bactericidal antibiotic,
ci > βi, φ becomes negative and bacteria do not grow but instead die, at rate di = −φ(ci, βi).

We simulate the model using the stochastic Monte Carlo algorithm described by Greulich et al.
[23] (see Methods). All our simulations are initiated with a fixed nutrient concentration smax in
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all microhabitats, and with N0 bacteria in the first microhabitat (and zero elsewhere). All model
parameters are given in the Methods section.

A note on units and parameters – our model aims to be generic, rather than to represent partic-
ular antibiotic-bacteria combinations. Nevertheless, it is important to consider the units of time,
space, nutrient and antibiotic concentration in the model. The units of time in our model can be
considered to be hours (this is consistent with the choice of gmax = 1h−1, a typical growth rate
for Escherichia coli on minimal lab media [41]). We suppose that the volume of a microhabitat
is ∼ 1µl, or equivalently its size is ∼ 1mm. For the migration rate, our chosen value of m = 0.1
then corresponds to an effective diffusion constant of m2 mm2h−1 ≈ 3 µm2s−1 [42]. We define
the units of nutrient concentration in terms of the yield, or amount of nutrient needed to create a
single bacterial cell. Thus the chosen value smax = 500 implies that the maximal bacterial density
that can be reached in the model is 500 bacteria per microhabitat, or ∼ 5× 105 cells per ml. The
antibiotic concentration features in our model only in relation to the MIC. Since the functions
βFGTA
i and βSGTA

i (Eqs. (3) and (4)) have minimal values of 1, the antibiotic concentration is
effectively defined in units of the minimal MIC (i.e. the MIC value for excess nutrients in the case
of the FGTA and for zero nutrients in the case of the SGTA).

For bacteriostatic antibiotics, growth-dependent susceptibility
affects population expansion

Expansion in a uniform antibiotic concentration

We first study how a bacterial population invades an environment with a spatially uniform con-
centration of a bacteriostatic antibiotic (ci = c for i ∈ [0, L]). In the absence of growth-dependent
susceptibility, we expect the model, in the continuum limit, to map onto the Fisher-KPP equation
[23, 43, 44, 45, 46]:

∂n

∂t
= D

∂2n

∂x2
+ bmaxn

(
1− n

nmax

)
, (7)

where x is a spatial coordinate, n is the population density, D is an effective diffusion constant
arising from migration between microhabitats, bmax is the maximal growth rate and nmax is a
carrying capacity. Eq. (7) has travelling wave solutions with wave speed 2

√
Dbmaxnmax [43, 44].

In our model, the maximal growth rate scales with the pharmacodynamic function φ(c, β), which
for the bacteriostatic antibiotic, obeys Eq. (5). Therefore we expect the speed v of spread of the

bacterial population in our model to scale as v ∝
√

1−
(
c
β

)2
, if the antibiotic concentration is

below the MIC (c < β). For concentrations above the MIC, the bacteria do not grow and so there
is no wave propagation.

Figure 2 shows that, for the growth-independent antibiotic (GIA), the population indeed expands
as a travelling wave for c < βGIA = 5 (Figure 2 b,e and h), and that the speed v scales as expected
(Figure 2 j and k).

Growth-dependent susceptibility changes the results quantitatively but not qualitatively. For both
the fast-growth targeting antibiotic (FGTA) and the slow-growth targeting antibiotic (SGTA), our
simulations show that the population expands as a travelling wave (Figure 2), but the growth-
dependent susceptibility alters the range of antibiotic concentrations over which invasion happens.
For the FGTA, population expansion happens only for c < 1 (Figure 2 a,d,g), whereas for the SGTA
we observe expansion even for c = 5 (Figure 2 c,f,i). Thus, for a uniform antibiotic concentration,
the fast-growth targeting antibiotic is much more effective at preventing bacterial invasion.

This observation can be rationalised by noting that the propagation of Fisher-KPP waves is gov-
erned by the dynamics at the edge of the wave front [46, 47]; i.e. these are ‘pulled waves’ [46, 47, 48].
The edge of the wave front is also where the population density is lowest, hence nutrients are abun-
dant, and the local growth rate is highest. For the FGTA, the MIC, βFGTA

i , decreases with the
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Figure 2: Population waves for a uniform concentration of a bacteriostatic antibiotic. Panels (a-i)
show snapshots of the population density, sampled every 100 time units, for the FGTA, GIA and
SGTA (left to right), at antibiotic concentrations c = 0.5, c = 1.0 and c = 5.0 (top to bottom).
For clarity, every fourth snapshot is shown in black. Panels j and k show the average speed of
expansion of the population wave as a function of antibiotic concentration, for the three antibiotic
types. The dependence of wave speed on concentration is quadratic (inset to panel k), consistent
with our expectation from Fisher-KPP wave theory. The wave travels faster in the SGTA case and
slower in the FGTA case, but all the plots collapse onto one line when the antibiotic concentration
is scaled by the value of the MIC for maximal nutrient concentration, βmax ≡ β(smax) (main plots
in panels j and k).
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nutrient concentration, implying that bacteria at the edge of the wave are maximally inhibited by
the antibiotic. In contrast, for the SGTA, the MIC, βSGTA

i , increases with the nutrient concen-
tration, implying that bacteria at the edge of the wave are minimally inhibited by the antibiotic.
This suggests that the invasion dynamics with growth-dependent susceptibility should map onto
Fisher-KPP theory, but with a wave speed controlled by the MIC value at the wave edge. Figure 2
j and k show that this is indeed the case; scaling the antibiotic concentration by βFGTA(smax) = 1
for the FGTA and by βSGTA(smax) = 10 for the SGTA results in a collapse of all of our simu-
lation data onto a universal curve. Thus, in our model, the significant quantitative difference in
the invasion of a uniform environment in the presence of FGTA and SGTA antibiotics is caused
by the contrasting antibiotic susceptibilities of bacteria at the nutrient-rich edge of the travelling
wave.

Bacterial expansion in an antibiotic gradient

When a bacterial population wave expands into a region with a gradient of antibiotic, we expect
the wave to slow down and eventually stop when the population reaches an antibiotic concentration
equal to its MIC [23]. Here, following Greulich et al. [23], we assume an exponentially increasing
concentration of antibiotic:

ci = exp(αi)− 1. (8)

This antibiotic profile is plotted in Figure 3a for α = 0.0049 (purple line). This corresponds to a
rather long decay length of ∼ 1/α ∼ 2 m (similar to that of the giant gradient plate of Baym et al.
[20]), but allows us to see clearly what is going on in our simulations (the antibiotic concentration
for the last microhabitat (i = 500) is equal to c500 = 10.6, which is only just greater than our
maximal MIC value). Figure 3a also shows the concentration profile for α = 0.02 (pink line; decay
length ∼ 5 cm); we show in the Supplementary Material that we obtain qualitatively the same
results for this steeper antibiotic gradient.

Figure 3b (orange line) shows that, without growth-dependent susceptibility (the GIA), the pop-
ulation wave is indeed halted by the antibiotic gradient (the long timescales here arise from the
shallowness of the gradient; in the Supplementary Material, Figure S1, we show that the wave
halts much earlier for a steeper gradient). Figure 3d shows the wave profiles for the GIA, plotted
at different times; once the wave has stopped, further spread of the population occurs simply by
diffusion. Figure 3g further illustrates the underlying cause of the halt in expansion: the growth
rate bi decreases in front of the wave due to the increasing antibiotic concentration (note that the
growth rate also decreases behind the wave due to nutrient depletion).

We expect growth-dependent susceptibility to alter this picture. For the FGTA, antibiotic sus-
ceptibility is greater at the advancing tip of the wave, due to the abundant nutrients. This leads
to a lower growth rate at the wave tip (Figure 3f), and therefore the wave advance is inhibited
at a lower antibiotic concentration than for the GIA (Figure 3c). This can also be seen when we
plot front position as a function of time (Figure 3b). We obtain contrasting results for the SGTA.
Here, antibiotic susceptibility is reduced at the front of the wave, where nutrients are abundant,
and increased behind the wave front, where nutrients are scarce (Figure 3h). Figure 3b and e show
that for the SGTA, the wave spreads further before being inhibited by the antibiotic.

In summary, our simulations show that growth-dependent susceptibility can have important effects
on bacterial population expansion in a drug gradient. If the antibiotic is more effective for fast-
growing bacteria (FGTA), we expect strong inhibition at the tip of the population wave, greatly
limiting the population’s ability to colonise the gradient. However, if the antibiotic is more effective
for slow-growing bacteria (SGTA), the antibiotic gradient will fail to inhibit bacteria at the wave
tip, and the population will advance further into the gradient before being stopped.
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Figure 3: Population waves in a gradient of a bacteriostatic antibiotic. (a) Profile of the antibiotic
concentration for α = 0.0049 (studied here), and for α = 0.02 (discussed in the Supplementary
Material). (b) Position of the advancing population wavefront over time for the three antibiotic
types. The waves advance at a constant speed before stopping when the antibiotic concentration
prevents bacterial growth. The SGTA is the least effective at curtailing the spatial advancement
of the population, followed by GIA and FGTA. (c-e) Snapshots of the bacterial population density,
sampled every 100 time units (for clarity, every 4th snapshot is shown in black), for the three
antibiotic types. The wave spreads further in the SGTA case and less far in the FGTA case. (f-h)
Spatial profiles of the local bacterial growth rate (bi), sampled every 100 time units for the three
antibiotic types. Black lines here correspond to the same time points as those in panels (c-e).
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Figure 4: Population waves for a gradient of bacteriostatic antibiotic with a Langmuir-like phar-
macodynamic function. Simulations were performed with α = 0.0049 and the function φ(c, β) of
Eq.(9). Panels (a) and (b) show population density snapshots sampled every 100 time units (with
every 4th sample in black), for FGTA and SGTA antibiotics; panels (c) and (d) show corresponding
profiles of the local growth rate bi.

Our conclusions are independent of the shape of the pharmacodynamic
function

Our choice of pharmacodynamic function φ(c, β) is somewhat arbitrary. The threshold-like form
of Eqs. (5) and (6) is realistic for some antibiotics, such as ciprofloxacin, rifampicin and strep-
tomycin at sub-MIC concentrations [33, 40]. However, other antibiotics such as tetracycline and
chloramphenicol show smoother, Langmuir-like pharmacodynamic functions, for which the general
form

φ(c, β) =
1

1 + c
β

(9)

has been found to provide a good fit to data [33].

To test the effect of the pharmacodynamic function, we repeated our simulations using the smoother
form of φ(c, β) as in Eq. (9), but retaining the same relationships between the MIC and the nutri-
ent concentration, Eqs. (3) for the FGTA and (4) for the SGTA. Simulating this model, we obtain
qualitatively similar results (Figure 4); for the FGTA wave expansion is inhibited earlier, whereas
for SGTA the wave is able to expand further into the antibiotic gradient. However, the difference
in pharmacodynamic function causes a quantitative difference in the spread of the bacterial popu-
lation. Antibiotics with a Langmuir-like pharmacodynamic function are generally less effective at
inhibiting bacterial expansion than antibiotics with a threshold-like pharmacodynamic function,
independent of their growth-dependent susceptibility.

It is important to note that the shape of the pharmacodynamic curve may actually be coupled to
the growth-dependence drug susceptibility. For example, the model of Greulich et al. (2015) [33]
suggests that, for ribosome-targeting antibiotics, a smoothly decreasing, Langmuir-like inhibition
function is intrinsically linked to the FGTA scenario, whereas a threshold-like inhibition function
is a property of the SGTA scenario. Therefore, a comparison of the dynamics of a bacterial
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population in gradients of, for example, streptomycin versus tetracycline, might be complicated
(see Supplementary Material). Understanding more generally the link between growth-dependent
susceptibility and the shape of the pharmacodynamic function is an interesting topic for future
research.

For bactericidal antibiotics, more killing is achieved for SGTA
than FGTA

We now investigate what happens for bactericidal antibiotics, i.e. those that are able to kill
bacteria, rather than just preventing growth. To model a bactericidal antibiotic, we use the
pharmacodynamic function φ of Eq. (6), and implement bacterial death at rate d = −φ when
φ < 0. This leads to a qualitatively different outcome in our simulations (Figure 5). Focusing
initially on the fast-growth targeting antibiotic (FGTA), we observe that bacteria behind the wave
front remain alive (Figure 5a-c), although mostly non-growing due to nutrient depletion (Figure
5g), whereas bacteria at the edge of the wave are dead.

For the slow-growth targeting antibiotic (SGTA), the population wave advances further into the
antibiotic gradient than for the FGTA, as is the case for the bacteriostatic antibiotic. However,
the population composition within the wave is very different. For the bactericidal slow-growth
targeting antibiotic, we observe a ‘striped’ population structure (Figure 5): bacteria at the very
edge of the wave are dead, but there is a zone of live bacteria just behind the tip, followed by a
zone of dead bacteria and finally, a zone of live, but non-growing bacteria at the very back of the
wave.

Figure 5 also reveals a discretisation effect in our simulations: the apparently periodic peaks in
the abundance of bacteria within the dead zone (Figure 5d-f) arise from the discretisation of the
nutrient concentration, and the small numbers of bacteria, in our model 1 To verify that our key
observation of the ‘striped’ population structure is robust, we also simulated a continuum model
for the bactericidal antibiotic. Our continuum model consists of the following equations for the
population density n(x, t) and nutrient concentration s(x, t):

∂n

∂t
=


D
∂2n

∂x2
+ n[φ(c, β) + ε] if φ(c, β) ≥ 0,

D
∂2n

∂x2
+ nφ(c, β) if φ(c, β) < 0.

(10)

and
∂s

∂t
=

{
−n[φ(c, β)g(s) + ε] if φ(c, β) ≥ 0,
0 if φ(c, β) < 0,

(11)

where D is a diffusion constant, related to the migration rate in our discrete model (see Methods),
and ε is a random variable with mean zero, uniformly distributed in the range±0.1φmax(c, β).

Figure 6 shows the results of our continuum simulations, for the FGTA and SGTA antibiotics.
These results have the same qualitative features as those of the discrete model: the population
wave advances further into the antibiotic gradient for the SGTA than for the FGTA, but for the
SGTA a ’stripe’ of dead bacteria trails behind the wave tip. We note that the noise term in Eqs.

1Briefly, in our model, a crossover between growth and death happens at the position i∗ where φi(ci, βi) = 0.
Using Eqs. (6) and (8), this implies that i∗ = α−1 ln [2 + 9(g(si)/gmax)]. However, the nutrient concentra-
tion is measured in discrete units of the bacterial yield (i.e. the amount of nutrient needed to produce one
bacterium). Starting from the back of the wave, where nutrient is depleted: si = 0, we encounter a value
of i∗ = α−1 ln [2 + 9(g(0)/gmax)] = 141: here bacteria begin to die. Beyond this point, however, the nutri-
ent concentration is higher, and so the bacterial susceptibility is lower: for si = 1, the value of i∗ shifts to
i∗ = α−1 ln [2 + 9(g(1)/gmax)] = 168. Even further along, the nutrient concentration is even higher, and the
susceptibility is even lower: i∗(si = 3) = 191, and so on. Thus, the nutrient concentration in our model undergoes
a series of discrete steps close to the wave edge, each of which shifts the threshold between growth and death. Each
of these steps is associated with a peak in the number of dead bacteria. The larger size of the first peak, at i = 141,
can be explained by migration of live bacteria from the ‘live zone’ into the ‘dead zone’.
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Figure 5: Population dynamics in a gradient of a bactericidal antibiotic (with α = 0.0049). Panels
a-f show snapshots of the population densities of live (green) and dead (red) bacteria, sampled
at t=500, t=1000 and t=2000 time units (left to right), for the FGTA and SGTA cases (top and
bottom rows). For the FGTA (a-c), dead bacteria appear at the wave edge once the wave’s advance
halts. For the SGTA (d-f), a ‘striped’ population structure emerges, in which blocks of live and
dead bacteria alternate, with a large ‘dead zone’ of dead bacteria behind the wave front. Panels g
and h show snapshots of the local growth rate bi for the FGTA and SGTA respectively (in panel
g, the red line lies on top of the orange and green lines). Panels i and j summarize the situation by
tracking the percentage of the population which is alive (green lines) and the total population size
(live or dead; purple line), for the FGTA (i) and SGTA (j). Although the total population is larger
for the SGTA, the absolute number of live bacteria is similar for the two antibiotics. Therefore
there is a trade off between having a small, yet active population (FGTA), or a larger, but more
inert one (SGTA).
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Figure 6: Population dynamics in a gradient of a bactericidal antibiotic, for the continuum model
defined by Eqs. (10-11), with D = 3µm2/s and for α = 0.0049. Snapshots of the population
densities of live (green) and dead (red) bacteria are shown, sampled at t=500, t=1000 and t=2000
time units (left to right), for the FGTA and SGTA cases (top and bottom rows).

(10-11) is necessary to obtain this behaviour; briefly, this is because the model has a ‘tipping
point’ when the local nutrient concentration is such that the pharmacodynamic function φ = 0.
For a bactericidal antibiotic, when the nutrient concentration decreases beyond this point, bacterial
death kicks in, creating the striped population structure. Noise acts to nudge the system over this
threshold, while in a purely deterministic version of the model the system simply remains poised at
the tipping point (for further discussion of this point, see the Supplementary Material). While the
form of the noise as implemented in Eqs (10-11) is somewhat arbitrary, we expect that stochastic
factors that could perform this role would be present in any real scenario.

Returning to the discrete model, our results for the FGTA and SGTA bactericidal antibiotics can
be summarised by tracking the total bacterial population size, as well as the percentage of the
total population that is alive. Figure 5i shows that for the FGTA, the total bacterial population
remains quite low (as the population wave does not advance far into the gradient), but almost
all the bacteria are alive. In contrast, for the SGTA (Figure 5j), the total population size is
much higher but a large fraction of these bacteria are dead. This situation suggests a tradeoff:
an FGTA antibiotic is optimal where the total bacterial population is the major issue (e.g. to
reduce biofilm thickness and hence the potential for inflammatory responses or clogging, or in
the case where the biofilm releases toxins), while an SGTA antibiotic may be a better choice for
maximising the percentage killing (which is likely to be important for propagation and eradication
of infections).
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Discussion

Antibiotics have come to play a key role in modern medicine since their introduction in the first half
of the 20th century. Despite this, large gaps remain in our basic understanding of how they work:
closing these gaps could lead to better treatment strategies [49, 50, 51, 52, 53] and better approaches
to counteract the widespread emergence of antimicrobial resistance (AMR) [54, 55].

One such gap concerns how bacterial physiology and antibiotic action come together to determine
the shape, and the growth-rate dependence, of the pharmacodynamic function [33, 34, 52, 54,
56]. Spatial heterogeneity represents another gap: we do not know how the spatial structure of
an infection affects its susceptibility to treatment by antibiotics, and its potential for evolving
resistant mutant bacteria [23, 22, 24, 19, 35, 57, 58]. Here, we bring together these two themes to
show that growth-rate dependent antibiotic susceptibility can significantly affect how a bacterial
population spreads in a spatial gradient of antibiotic. We show that antibiotics that target fast-
growing bacteria (FGTA) are better at preventing bacterial population invasion that antibiotics
that target slow-growing bacteria (SGTA). However, for bactericidal antibiotics, a tradeoff exists:
FGTA antibiotics lead to a smaller total population which is mostly alive, while SGTA antibiotics
lead to a larger total population, a significant fraction of which are dead. Depending on the
situation, either one of these two outcomes might be preferable.

From a fundamental perspective, our work connects with a long-established body of theoretical
work on travelling waves [46, 59] and more recent work on their application to bacterial systems
[23, 60, 48, 61]. Our results can be rationalised in the context of Fisher-KPP wave theory, and the
fact that Fisher-KPP waves are ‘pulled waves’, being governed by what happens at the wave’s edge
[46, 47]. In our model, growth-dependent susceptibility leads to large differences in MIC between
the FGTA and SGTA antibiotics at the wave edge, where nutrients are abundant. This in turn
leads to differences in wave speed, and in the extent to which the population manages to advance
into an antibiotic gradient.

From a practical perspective, our model is simplistic, but its results could have implications for the
treatment of biofilm infections [62]. In biofilms, a population of bacteria is embedded in a polymeric
matrix and adheres to a surface. Biofilms are notoriously difficult to eradicate with antibiotics,
for reasons that remain unclear, but may include lower penetrance of antibiotics, lower growth
rate, genetic mutations and phenotypic persistence [62, 63, 57, 64]. Interestingly, Pamp et al. [35]
observed that antibiotics such as ciprofloxacin, tetracycline and tobramycin were more effective
against the fast growing subpopulation at the surface of a Pseudomonas aeruginosa biofilm, while
colistin, EDTA and SDS were more effective against the non-growing subpopulation within the
biofilm. Our model suggests that FGTA antibiotics might be more effective at the biofilm surface,
while SGTA antibiotics might be better at eradicating the slow-growing biofilm core.

Our model makes a number of important assumptions. Spatial structure in our model is reduced
to a one-dimensional chain of microhabitats, exposed to an exponentially increasing concentration
of antibiotic: features such as the complex structure of a biofilm [65, 66], bacterial chemotaxis and
fluid flow [67] are neglected [10]. Real infections are subjected to antibiotic gradients in two or
three dimensions; it would be interesting to extend our models to more complex geometries. We
also make assumptions about bacterial physiology. Perhaps most importantly, we have transferred
insights on growth-rate dependent susceptibility obtained from experiments where growth rate is
controlled by nutrient richness [68, 69, 70, 71], to the situation where nutrient concentration controls
growth rate. In other words, we have assumed that a slow growth rate caused by nutrient depletion
has a similar effect on antibiotic susceptibility as a slow growth rate caused by a poor nutrient
supplied in abundance. We are not aware of any experimental tests of this hypothesis, although
early work by Neidhardt and Magasanik [72] suggests that the RNA/protein ratio (indicative
of ribosome abundance) achieved by E. coli in stationary phase on glucose media matches that
achieved during steady state growth on very poor nutrients, suggesting that our assumption may be
reasonable for ribosome-targeting antibiotics. More data on this topic would be extremely useful.
More broadly, we have assumed that the bacterial response to antibiotic is uniquely determined
by the nutrient and antibiotic concentrations; in reality, one might expect to see heterogeneity in
response among individual bacteria in the population: for example some might be dying while
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others are still growing, for a given concentration of antibiotic [54, 73]. It would be interesting to
investigate the consequences of this in future work.

In our model, we have also assumed simple linear relations for the coupling between growth rate
and MIC: while this seems to be appropriate for some antibiotics, it is not realistic for others
[33] Our conclusions remain unchanged when we implement non-linear relations between MIC and
growth rate; see the Supplementary Material). We have also assumed that the MIC depends only
on the nutrient-dependent component of the growth rate g(s); if it were to depend on the full
growth rate g×φ, interesting feedback effects might be obtained. Furthermore, as discussed earlier
and in the Supplementary Material, we have ignored the likely link between growth-rate dependent
susceptibility and the shape of the pharmacodynamic function. Because antibiotics with different
growth-rate dependent susceptibilities may also have different pharmacodynamic functions, testing
experimentally our model prediction that FGTA antibiotics advance less far into an antibiotic
gradient than SGTA antibiotics may not be a simple task. However, simple experiments might be
able to test the prediction of a ‘striped’ population structure for bactericidal SGTA antibiotics (but
not for FGTA bactericidal antibiotics). If confirmed, this live-dead striping phenomenon might be
of practical importance in understanding the response of biofilms to antibiotics.

Understanding quantitatively how antibiotics work is important for optimising antibiotic usage and
preventing the emergence of AMR. Our work suggests that both growth-dependent susceptibility
and spatial structure can play important roles. FGTA antibiotics are predicted to be more effective
than SGTA antibiotics at preventing the spatial spread of a bacterial population (e.g. biofilm
growth). However, if the goal is to treat an existing population (e.g. a biofilm), bactericidal SGTA
antibiotics are predicted to be more effective at killing the slow-growing core.

Methods

Model parameters

The number L of microhabitats in our simulations was set to L = 500, following the work of
Greulich et al. [23], which in turn was loosely based on the experimental protocol of Zhang et al.
[19]. The migration rate was set to m = 0.1, also following Greulich et al. [23], which is small
compared to the maximum growth rate bi ≈ 1. As discussed in the main text, this corresponds to a
rather low effective bacterial diffusion constant, or to a microfluidic device like that of Zhang et al.,
in which microhabitats are connected through small channels [19]. The maximal growth rate was
set to bmax = 1, which matches roughly the growth rate of E. coli on glucose minimal media, if the
time units are taken to be hours (see main text). The Monod constantK in the growth equation (2)
was set to K = 33 concentration units. For E. coli growing on glucose minimal media, the Monod
constant is approximately 1µM, or equivalently 6× 1017 molecules per litre [74, 75]. Our units of
nutrient concentration are the nutrient needed to make one bacterium, per microhabitat volume.
The amount of glucose consumed to make one E. coli bacterium, or the yield, is approximately
1.8 × 1010 molecules [74, 75], while we assume the microhabitat volume to be 1µl. Therefore K
translates into 3.3× 107 bacterial yields per litre, or 33 bacterial yields per microlitre.

In our simulations, the initial nutrient concentration in each microhabitat was set to smax = 500
units, and each bacterial replication event consumed 1 unit of nutrient. Each simulation was
initiated with N0 = 100 bacteria in the first microhabitat.

Simulation algorithm

To simulate our model, we used the Monte Carlo algorithm introduced by Greulich et al. [23],
which is comparable to the well-known Gillespie algorithm [76, 77]. First, a bacterium was chosen
at random from the current population (Ntot). Next, the rates for birth (bi), migration (m) and
death (di, in the case of a bactericidal antibiotic) were calculated for the selected bacterium. Then
a random number, r, between 0 and a value Rmax was generated, where Rmax > bi + m + di.
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In our simulations, we used Rmax = 1.2 for the bacteriostatic antibiotic and Rmax = 5.2 for the
bactericidal antibiotic. The random number r was used to select a migration event, replication
event, a death event or no event, with probability proportional to the rates for these events. Once
the chosen event had been executed, the time t was increased by ∆t = 1/NtotRmax.

Continuum model for the bactericidal antibiotic

For the bactericidal antibiotic, we simulated the system using the continuous reaction-diffusion
population dynamics model defined by equations 10 and 11. The noise ε was taken to be a random
variable with mean zero, uniformly distributed in the range ±0.1φmax(c, β). The diffusion constant
D was chosen to be equivalent to the migration rate in our discrete model. Mapping a discrete one-
dimensional diffusion model with lattice size δx and migration ratem onto a continuum model gives
D = m(δx)2. In our discrete model the microhabitat size is assumed to be δ =1mm (see Model
section), and m = 0.1h−1; therefore D = 0.01mm2h−1 ≈ 3µm2s−1. The model was solved using a
simple Forwards-Time Central-Space finite difference method, with δt = 0.01 and δx = 0.1mm, on
a spatial grid of 5000 elements, with zero-flux boundary conditions at both ends.
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