15 research outputs found

    Conductance Changes of Na+ Channels during the Late Na+ Current Flowing under Action Potential Voltage Clamp Conditions in Canine, Rabbit, and Guinea Pig Ventricular Myocytes

    Get PDF
    Late sodium current (INa,late) is an important inward current contributing to the plateau phase of the action potential (AP) in the mammalian heart. Although INa,late is considered as a possible target for antiarrhythmic agents, several aspects of this current remained hidden. In this work, the profile of INa,late, together with the respective conductance changes (GNa,late), were studied and compared in rabbit, canine, and guinea pig ventricular myocytes using the action potential voltage clamp (APVC) technique. In canine and rabbit myocytes, the density of INa,late was relatively stable during the plateau and decreased only along terminal repolarization of the AP, while GNa,late decreased monotonically. In contrast, INa,late increased monotonically, while GNa,late remained largely unchanged during the AP in guinea pig. The estimated slow inactivation of Na+ channels was much slower in guinea pig than in canine or rabbit myocytes. The characteristics of canine INa,late and GNa,late were not altered by using command APs recorded from rabbit or guinea pig myocytes, indicating that the different shapes of the current profiles are related to genuine interspecies differences in the gating of INa,late. Both INa,late and GNa,late decreased in canine myocytes when the intracellular Ca2+ concentration was reduced either by the extracellular application of 1 µM nisoldipine or by the intracellular application of BAPTA. Finally, a comparison of the INa,late and GNa,late profiles induced by the toxin of Anemonia sulcata (ATX-II) in canine and guinea pig myocytes revealed profound differences between the two species: in dog, the ATX-II induced INa,late and GNa,late showed kinetics similar to those observed with the native current, while in guinea pig, the ATX-II induced GNa,late increased during the AP. Our results show that there are notable interspecies differences in the gating kinetics of INa,late that cannot be explained by differences in AP morphology. These differences must be considered when interpreting the INa,late results obtained in guinea pig

    3D cell segregation geometry and dynamics are governed by tissue surface tension regulation

    Get PDF
    Tissue morphogenesis and patterning during development involve the segregation of cell types. Segregation is driven by differential tissue surface tensions generated by cell types through controlling cell-cell contact formation by regulating adhesion and actomyosin contractility-based cellular cortical tensions. We use vertebrate tissue cell types and zebrafish germ layer progenitors as in vitro models of 3-dimensional heterotypic segregation and developed a quantitative analysis of their dynamics based on 3D time-lapse microscopy. We show that general inhibition of actomyosin contractility by the Rho kinase inhibitor Y27632 delays segregation. Cell type-specific inhibition of non-muscle myosin2 activity by overexpression of myosin assembly inhibitor S100A4 reduces tissue surface tension, manifested in decreased compaction during aggregation and inverted geometry observed during segregation. The same is observed when we express a constitutively active Rho kinase isoform to ubiquitously keep actomyosin contractility high at cell-cell and cell-medium interfaces and thus overriding the interface-specific regulation of cortical tensions. Tissue surface tension regulation can become an effective tool in tissue engineering

    Selective Inhibition of Cardiac Late Na+ Current Is Based on Fast Offset Kinetics of the Inhibitor

    Get PDF
    The present study was designed to test the hypothesis that the selectivity of blocking the late Na+ current (INaL) over the peak Na+ current (INaP) is related to the fast offset kinetics of the Na+ channel inhibitor. Therefore, the effects of 1 µM GS967 (INaL inhibitor), 20 µM mexiletine (I/B antiarrhythmic) and 10 µM quinidine (I/A antiarrhythmic) on INaL and INaP were compared in canine ventricular myocardium. INaP was estimated as the maximum velocity of action potential upstroke (V+max). Equal amounts of INaL were dissected by the applied drug concentrations under APVC conditions. The inhibition of INaL by mexiletine and quinidine was comparable under a conventional voltage clamp, while both were smaller than the inhibitory effect of GS967. Under steady-state conditions, the V+max block at the physiological cycle length of 700 ms was 2.3% for GS967, 11.4% for mexiletine and 26.2% for quinidine. The respective offset time constants were 110 ± 6 ms, 456 ± 284 ms and 7.2 ± 0.9 s. These results reveal an inverse relationship between the offset time constant and the selectivity of INaL over INaP inhibition without any influence of the onset rate constant. It is concluded that the selective inhibition of INaL over INaP is related to the fast offset kinetics of the Na+ channel inhibitor

    TRPM4-ioncsatornák vizsgálatának farmakológiai lehetőségei

    No full text
    A tranziens receptorpotenciál melasztatin-4 a TRPM-fehérjecsalád egyedülálló tagja. A TRPM5-höz hasonlóan Ca2+-érzékeny és csak egyértékű kationokra permeábilis. Sok szervben, széles körben expresszálódik és a membránpotenciál és a Ca2+-homeosztázis szabályozásával számos funkcióval is bír mind az ingerlékeny, mind a nem ingerelhető sejtekben. Az áttekintés a TRPM4 farmakológiai modulációját tárgyalja az ioncsatorna egy régebbi, gyakrabban használt, valamint két újabb, potenciálisan szelektívebb inhibitorának összehasonlításával és leírásával. A TRPM4 egyre nagyobb figyelmet kap és valószínűleg a jövőben is a kutatások témája lesz

    Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?

    No full text
    Late sodium current has long been linked to dysrhythmia and contractile malfunction in the heart. Despite the increasing body of accumulating information on the subject, our understanding of its role in normal or pathologic states is not complete. Even though the role of late sodium current in shaping action potential under physiologic circumstances is debated, it’s unquestioned role in arrhythmogenesis keeps it in the focus of research. Transgenic mouse models and isoform-specific pharmacological tools have proved useful in understanding the mechanism of late sodium current in health and disease. This review will outline the mechanism and function of cardiac late sodium current with special focus on the recent advances of the area

    Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 1: Modulation of TRPM4

    No full text
    Transient receptor potential melastatin 4 is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+-sensitive and permeable to monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions by regulating the membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the pharmacological modulation of TRPM4 by listing, comparing, and describing both endogenous and exogenous activators and inhibitors of the ion channel. Moreover, other strategies used to study TRPM4 functions are listed and described. These strategies include siRNA-mediated silencing of TRPM4, dominant-negative TRPM4 variants, and anti-TRPM4 antibodies. TRPM4 is receiving more and more attention and is likely to be the topic of research in the future

    Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 2: TRPM4 in Health and Disease

    No full text
    Transient receptor potential melastatin 4 (TRPM4) is a unique member of the TRPM protein family and, similarly to TRPM5, is Ca2+ sensitive and permeable for monovalent but not divalent cations. It is widely expressed in many organs and is involved in several functions; it regulates membrane potential and Ca2+ homeostasis in both excitable and non-excitable cells. This part of the review discusses the currently available knowledge about the physiological and pathophysiological roles of TRPM4 in various tissues. These include the physiological functions of TRPM4 in the cells of the Langerhans islets of the pancreas, in various immune functions, in the regulation of vascular tone, in respiratory and other neuronal activities, in chemosensation, and in renal and cardiac physiology. TRPM4 contributes to pathological conditions such as overactive bladder, endothelial dysfunction, various types of malignant diseases and central nervous system conditions including stroke and injuries as well as in cardiac conditions such as arrhythmias, hypertrophy, and ischemia-reperfusion injuries. TRPM4 claims more and more attention and is likely to be the topic of research in the future

    Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes

    Get PDF
    Enhancement of the late sodium current (INaL) increases arrhythmia propensity in the heart, whereas suppression of the current is antiarrhythmic. In the present study, we investigated INaL in canine ventricular cardiomyocytes under action potential voltage-clamp conditions using the selective Na+ channel inhibitors GS967 and tetrodotoxin. Both 1 µM GS967 and 10 µM tetrodotoxin dissected largely similar inward currents. The amplitude and integral of the GS967-sensitive current was significantly smaller after the reduction of intracellular Ca2+ concentration ([Ca2+]i) either by superfusion of the cells with 1 µM nisoldipine or by intracellular application of 10 mM BAPTA. Inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII) by KN-93 or the autocamtide-2-related inhibitor peptide similarly reduced the amplitude and integral of INaL. Action potential duration was shortened in a reverse rate-dependent manner and the plateau potential was depressed by GS967. This GS967-induced depression of plateau was reduced by pretreatment of the cells with BAPTA-AM. We conclude that (1) INaL depends on the magnitude of [Ca2+]i in canine ventricular cells, (2) this [Ca2+]i-dependence of INaL is mediated by the Ca2+-dependent activation of CaMKII, and (3) INaL is augmented by the baseline CaMKII activity
    corecore