29 research outputs found

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Evidence for long-range glycosyl transfer reactions in the gas phase

    Full text link
    AbstractA long-range glycosyl transfer reaction was observed in the collision-induced dissociation Fourier transform (CID FT) mass spectra of benzylamine-labeled and 9-aminofluorene-labeled lacto-N-fucopentaose I (LNFP I) and lacto-N-difucohexaose I (LNDFH I). The transfer reaction was observed for the protonated molecules but not for the sodiated molecules. The long-range glycosyl transfer reaction involved preferentially one of the two L-fucose units in labeled LNDFH I. CID experiments with labeled LNFP I and labeled LNFP II determined the fucose with the greatest propensity for migration. Further experiments were performed to determine the final destination of the migrating fucose. Molecular modeling supported the experiments and reaction mechanisms are proposed

    Loss of internal 1 → 6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides

    Get PDF
    The fragmentation behavior of [M + H]+ ions of a series of underivatized and per-O-methylated trisaccharides having 1 → 6 linked residues, of which one or two is a deoxy-fluoro or deoxy residue and thus has a unique mass, has been studied by using collision-induced dissociation fast-atom bombardment mass spectrometry. In addition to the usual fragment ions resulting from glycosidic bond cleavage, fragment ions were observed which must have been generated following an unusual rearrangement process which can be rationalized in terms of the loss of an internal monosaccharide residue

    The history of the Tissint meteorite, from its crystallization on Mars to its exposure in space: New geochemical, isotopic, and cosmogenic nuclide data

    Get PDF
    The Tissint meteorite fell on July 18, 2011 in Morocco and was quickly recovered, allowing the investigation of a new unaltered sample from Mars. We report new high-field strength and highly siderophile element (HSE) data, Sr-Nd-Hf-W-Os isotope analyses, and data for cosmogenic nuclides in order to examine the history of the Tissint meteorite, from its source composition and crystallization to its irradiation history. We present high-field strength element compositions that are typical for depleted Martian basalts (0.174 ppm Nb, 17.4 ppm Zr, 0.7352 ppm Hf, and 0.0444 ppm W), and, together with an extended literature data set for shergottites, help to reevaluate Mars’ tectonic evolution in comparison to that of the early Earth. HSE contents (0.07 ppb Re, 0.92 ppb Os, 2.55 ppb Ir, and 7.87 ppb Pt) vary significantly in comparison to literature data, reflecting significant sample inhomogeneity. Isotope data for Os and W (187Os/188Os = 0.1289 ± 15 and an Δ182W = +1.41 ± 0.46) are both indistinguishable from literature data. An internal Lu-Hf isochron for Tissint defines a crystallization age of 665 ± 74 Ma. Considering only Sm-Nd and Lu-Hf chronometry, we obtain, using our and literature values, a best estimate for the age of Tissint of 582 ± 18 Ma (MSWD = 3.2). Cosmogenic radionuclides analyzed in the Tissint meteorite are typical for a recent fall. Tissint's pre-atmospheric radius was estimated to be 22 ± 2 cm, resulting in an estimated total mass of 130 ± 40 kg. Our cosmic-ray exposure age of 0.9 ± 0.2 Ma is consistent with earlier estimations and exposure ages for other shergottites in general
    corecore