2 research outputs found

    Facilitating plasmid nuclear delivery by interfering with the selective nuclear pore barrier

    Full text link
    Nuclear pore complexes (NPCs) are sophisticated transporters assembled from diverse proteins termed nucleoporins (Nups). They control all nucleocytoplasmic transport and form a stringent barrier between the cytosol and the nucleus. While selective receptor‐mediated transport enables translocation of macromolecules up to striking sizes approaching megadalton‐scale, the upper cutoff for diffusion is at 40 kDa. Raising the cutoff is of particular importance for nuclear delivery of therapeutic nanoparticles, for example, gene and chemotherapy. In this work, we set out to present compounds capable of raising the cutoff to an extent enabling nuclear delivery of 6 kbp pDNA (150 kDa) in cultured human vascular endothelial cells. Of all tested compounds one is singled out, 1,6‐hexanediol (1,6‐HD). Our observations reveal that 1,6‐HD facilitates nuclear delivery of pDNA in up to 10–20% of the tested cells, compared to no delivery at all in control conditions. It acts by interfering with bonds between Nups that occupy the NPC channel and confer transport selectivity. It also largely maintains cell viability even at high concentrations. We envisage that 1,6‐HD may serve as a lead substance and usher in the design of potent new strategies to increase nuclear delivery of therapeutic nanoparticles

    Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines

    Full text link
    Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells
    corecore