666 research outputs found

    Frequency-dependent transport through a quantum dot in the Kondo regime

    Full text link
    We study the AC conductance and equilibrium current fluctuations of a Coulomb blockaded quantum dot. A relation between the equilibrium spectral function and the linear AC conductance is derived which is valid for frequencies well below the charging energy of the quantum dot. Frequency-dependent transport measurements can thus give experimental access to the Kondo peak in the equilibrium spectral function of a quantum dot. We illustrate this in detail for typical experimental parameters using the numerical renormalization group method in combination with the Kubo formalism.Comment: 4 pages, 4 figure

    Quantum Phase Transition in a Multi-Level Dot

    Full text link
    We discuss electronic transport through a lateral quantum dot close to the singlet-triplet degeneracy in the case of a single conduction channel per lead. By applying the Numerical Renormalization Group, we obtain rigorous results for the linear conductance and the density of states. A new quantum phase transition of the Kosterlitz-Thouless type is found, with an exponentially small energy scale T∗T^* close to the degeneracy point. Below T∗T^*, the conductance is strongly suppressed, corresponding to a universal dip in the density of states. This explains recent transport measurements.Comment: 4 pages, 5 eps figures, published versio

    Two path transport measurements on a triple quantum dot

    Get PDF
    We present an advanced lateral triple quantum dot made by local anodic oxidation. Three dots are coupled in a starlike geometry with one lead attached to each dot thus allowing for multiple path transport measurements with two dots per path. In addition charge detection is implemented using a quantum point contact. Both in charge measurements as well as in transport we observe clear signatures of states from each dot. Resonances of two dots can be established allowing for serial transport via the corresponding path. Quadruple points with all three dots in resonance are prepared for different electron numbers and analyzed concerning the interplay of the simultaneously measured transport along both paths.Comment: 4 pages, 4 figure

    Rotational levels in quantum dots

    Full text link
    Low energy spectra of isotropic quantum dots are calculated in the regime of low electron densities where Coulomb interaction causes strong correlations. The earlier developed pocket state method is generalized to allow for continuous rotations. Detailed predictions are made for dots of shallow confinements and small particle numbers, including the occurance of spin blockades in transport.Comment: RevTeX, 10 pages, 2 figure

    Magnetically induced chessboard pattern in the conductance of a Kondo quantum dot

    Full text link
    We quantitatively describe the main features of the magnetically induced conductance modulation of a Kondo quantum dot -- or chessboard pattern -- in terms of a constant-interaction double quantum dot model. We show that the analogy with a double dot holds down to remarkably low magnetic fields. The analysis is extended by full 3D spin density functional calculations. Introducing an effective Kondo coupling parameter, the chessboard pattern is self-consistently computed as a function of magnetic field and electron number, which enables us to quantitatively explain our experimental data.Comment: 4 pages, 3 color figure

    Measurements of higher order noise correlations in a quantum dot with a finite bandwidth detector

    Full text link
    We present measurements of the fourth and fifth cumulants of the distribution of transmitted charge in a tunable quantum dot. We investigate how the measured statistics is influenced by the finite bandwidth of the detector and by the finite measurement time. By including the detector when modeling the system, we use the theory of full counting statistics to calculate the noise levels for the combined system. The predictions of the finite-bandwidth model are in good agreement with measured data

    Electron Spins in Artificial Atoms and Molecules for Quantum Computing

    Full text link
    Achieving control over the electron spin in quantum dots (artificial atoms) or real atoms promises access to new technologies in conventional and in quantum information processing. Here we review our proposal for quantum computing with spins of electrons confined to quantum dots. We discuss the basic requirements for implementing spin-qubits, and describe a complete set of quantum gates for single- and two-qubit operations. We show how a quantum dot attached to leads can be used for spin filtering and spin read-out, and as a spin-memory device. Finally, we focus on the experimental characterization of the quantum dot systems, and discuss transport properties of a double-dot and show how Kondo correlations can be used to measure the Heisenberg exchange interaction between the spins of two dots.Comment: 13 pages, 8 figures, Invited Review (Semiconductor Spintronics, Special Issue of SST

    Wigner Molecules in Nanostructures

    Full text link
    The one-- and two-- particle densities of up to four interacting electrons with spin, confined within a quasi one--dimensional ``quantum dot'' are calculated by numerical diagonalization. The transition from a dense homogeneous charge distribution to a dilute localized Wigner--type electron arrangement is investigated. The influence of the long range part of the Coulomb interaction is studied. When the interaction is exponentially cut off the ``crystallized'' Wigner molecule is destroyed in favor of an inhomogeneous charge distribution similar to a charge density wave .Comment: 10 pages (excl. Figures), Figures available on request LaTe

    The Kondo Effect in the Unitary Limit

    Full text link
    We observe a strong Kondo effect in a semiconductor quantum dot when a small magnetic field is applied. The Coulomb blockade for electron tunneling is overcome completely by the Kondo effect and the conductance reaches the unitary-limit value. We compare the experimental Kondo temperature with the theoretical predictions for the spin-1/2 Anderson impurity model. Excellent agreement is found throughout the Kondo regime. Phase coherence is preserved when a Kondo quantum dot is included in one of the arms of an Aharonov-Bohm ring structure and the phase behavior differs from previous results on a non-Kondo dot.Comment: 10 page
    • …
    corecore