17 research outputs found

    Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: A stepped-wedge cluster randomised trial

    Get PDF
    Background: Neoadjuvant chemoradiotherapy (nCRT) plus surgery is a standard treatment for locally advanced oesophageal cancer. With this treatment, 29% of patients have a pathologically complete response in the resection specimen. This provides the rationale for investigating an active surveillance approach. The aim of this study is to assess the (cost-)effectiveness of active surveillance vs. standard oesophagectomy after nCRT for oesophageal cancer. Methods: This is a phase-III multi-centre, stepped-wedge cluster randomised controlled trial. A total of 300 patients with clinically complete response (cCR, i.e. no local or disseminated disease proven by histology) after nCRT will be randomised to show non-inferiority of active surveillance to standard oesophagectomy (non-inferiority margin 15%, intra-correlation coefficient 0.02, power 80%, 2-sided α 0.05, 12% drop-out). Patients will undergo a first clinical response evaluation (CRE-I) 4-6 weeks after nCRT, consisting of endoscopy with bite-on-bite biopsies of the primary tumour site and other suspected lesions. Clinically complete responders will undergo a second CRE (CRE-II), 6-8 weeks after CRE-I. CRE-II will include 18F-FDG-PET-CT, followed by endoscopy with bite-on-bite biopsies and ultra-endosonography plus fine needle aspiration of suspected lymph nodes and/or PET- positive lesions. Patients with cCR at CRE-II will be assigned to oesophagectomy (first phase) or active surveillance (second phase of the study). The duration of the first phase is determined randomly over the 12 centres, i.e., stepped-wedge cluster design. Patients in the active surveillance arm will undergo diagnostic evaluations similar to CRE-II at 6/9/12/16/20/24/30/36/48 and 60 months after nCRT. In this arm, oesophagectomy will be offered only to patients in whom locoregional regrowth is highly suspected or proven, without distant dissemination. The main study parameter is overall survival; secondary endpoints include percentage of patients who do not undergo surgery, quality of life, clinical irresectability (cT4b) rate, radical resection rate, postoperative complications, progression-free survival, distant dissemination rate, and cost-effectiveness. We hypothesise that active surveillance leads to non-inferior survival, improved quality of life and a reduction in costs, compared to standard oesophagectomy. Discussion: If active surveillance and surgery as needed after nCRT leads to non-inferior survival compared to standard oesophagectomy, this organ-sparing approach can be implemented as a standard of care

    More than skin deep: Gene regulation orchestrated by the transcription factor p63 in development and disease

    Get PDF
    Contains fulltext : 155618.pdf (publisher's version ) (Open Access)Radboud Universiteit Nijmegen, 23 maart 2016Promotor : Bokhoven, J.H.L.M. van Co-promotor : Zhou, H.270 p

    Gene regulatory mechanisms orchestrated by p63 in epithelial development and related disorders

    No full text
    Item does not contain fulltextThe transcription factor p63 belongs to the p53 family and is a key regulator in epithelial commitment and development. Mutations in p63 give rise to several epithelial related disorders with defects in skin, limb and orofacial structures. Since the discovery of p63, efforts have been made to identify its target genes using individual gene approaches and to understand p63 function in normal epithelial development and related diseases. Recent genome-wide approaches have identified tens of thousands of potential p63-regulated target genes and regulatory elements, and reshaped the concept of gene regulation orchestrated by p63. These data also provide insights into p63-related disease mechanisms. In this review, we discuss the regulatory role of p63 in normal and diseased epithelial development in light of these novel findings. We also propose future perspectives for dissecting the molecular mechanism of p63-mediated epithelial development and related disorders as well as for potential therapeutic strategies.11 p

    Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation

    No full text
    Contains fulltext : 144891.pdf (Publisher’s version ) (Open Access)The transcription factor p63 plays a pivotal role in keratinocyte proliferation and differentiation in the epidermis. However, how p63 regulates epidermal genes during differentiation is not yet clear. Using epigenome profiling of differentiating human primary epidermal keratinocytes, we characterized a catalog of dynamically regulated genes and p63-bound regulatory elements that are relevant for epithelial development and related diseases. p63-bound regulatory elements occur as single or clustered enhancers, and remarkably, only a subset is active as defined by the co-presence of the active enhancer mark histone modification H3K27ac in epidermal keratinocytes. We show that the dynamics of gene expression correlates with the activity of p63-bound enhancers rather than with p63 binding itself. The activity of p63-bound enhancers is likely determined by other transcription factors that cooperate with p63. Our data show that inactive p63-bound enhancers in epidermal keratinocytes may be active during the development of other epithelial-related structures such as limbs and suggest that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates genes through temporal- and spatial-specific active enhancers.16 p

    Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape

    Get PDF
    Contains fulltext : 200262.pdf (publisher's version ) (Open Access)Transcription factor p63 is a key regulator of epidermal keratinocyte proliferation and differentiation. Mutations in the p63 DNA-binding domain are associated with ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome. However, the underlying molecular mechanism of these mutations remains unclear. Here, we characterized the transcriptome and epigenome of p63 mutant keratinocytes derived from EEC patients. The transcriptome of p63 mutant keratinocytes deviated from the normal epidermal cell identity. Epigenomic analyses showed an altered enhancer landscape in p63 mutant keratinocytes contributed by loss of p63-bound active enhancers and unexpected gain of enhancers. The gained enhancers were frequently bound by deregulated transcription factors such as RUNX1. Reversing RUNX1 overexpression partially rescued deregulated gene expression and the altered enhancer landscape. Our findings identify a disease mechanism whereby mutant p63 rewires the enhancer landscape and affects epidermal cell identity, consolidating the pivotal role of p63 in controlling the enhancer landscape of epidermal keratinocytes

    An etiologic regulatory mutation in IRF6 with loss- and gain-of-function effects

    No full text
    DNA variation in Interferon Regulatory Factor 6 (IRF6) causes Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate (CLP). However, an etiologic variant in IRF6 has been found in only 70% of VWS families. To test whether DNA variants in regulatory elements cause VWS, we sequenced three conserved elements near IRF6 in 70 VWS families that lack an etiologic mutation within IRF6 exons. A rare mutation (350dupA) was found in a conserved IRF6 enhancer element (MCS9.7) in a Brazilian family. The 350dupA mutation abrogated the binding of p63 and E47 transcription factors to cis-overlapping motifs, and significantly disrupted enhancer activity in human cell cultures. Moreover, using a transgenic assay in mice, the 350dupA mutation disrupted the activation of MCS9.7 enhancer element and led to failure of lacZ expression in all head and neck pharyngeal arches. Interestingly, disruption of the p63 Motif1 and/or E47 binding sites by nucleotide substitution did not fully recapitulate the effect of the 350dupA mutation. Rather, we recognized that the 350dupA created a CAAAGT motif, a binding site for Lef1 protein. We showed that Lef1 binds to the mutated site and that overexpression of Lef1/beta-Catenin chimeric protein repressed MCS9.7-350dupA enhancer activity. In conclusion, our data strongly suggest that 350dupA variant is an etiologic mutation in VWS patients and disrupts enhancer activity by a loss- and gain-of-function mechanism, and thus support the rationale for additional screening for regulatory mutations in patients with CLP

    Updated protocol of the SANO trial: a stepped-wedge cluster randomised trial comparing surgery with active surveillance after neoadjuvant chemoradiotherapy for oesophageal cancer

    Get PDF
    Background: The Surgery As Needed for Oesophageal cancer (SANO) trial compares active surveillance with standard oesophagectomy for patients with a clinically complete response (cCR) to neoadjuvant chemoradiotherapy. The last patient with a clinically complete response is expected to be included in May 2021. The purpose of this update is to present all amendments to the SANO trial protocol as approved by the Institutional Research Board (IRB) before accrual is completed. Design: The SANO trial protocol has been published (https://doi.org/10.1186/s12885-018-4034-1). In this ongoing, phase-III, non-inferiority, stepped-wedge, cluster randomised controlled trial, patients with cCR (i.e. after neoadjuvant chemoradiotherapy no evidence of residual disease in two consecutive clinical response evaluations [CREs]) undergo either active surveillance or standard oesophagectomy. In the active surveillance arm, CREs are repeated every 3 months in the first year, every 4 months in the second year, every 6 months in the third year, and yearly in the fourth and fifth year. In this arm, oesophagectomy is offered only to patients in whom locoregional regrowth is highly suspected or proven, without distant metastases. The primary endpoint is overall survival. Update: Amendments to the study design involve the first cluster in the stepped-wedge design being partially randomised as well and continued accrual of patients at baseline until the predetermined number of patients with cCR is reached. Eligibility criteria have been amended, stating that patients who underwent endoscopic treatment prior to neoadjuvant chemoradiotherapy cannot be included and that patients who have highly suspected residual tumour without histological proof can be included. Amendments to the study procedures include that patients proceed to the second CRE if at the first CRE the outcome of the pathological assessment is uncertain and that patients with a non-passable stenosis at endoscopy are not considered cCR. The sample size was recalculated following new insights on response rates (34% instead of 50%) and survival (expected 2-year overall survival of 75% calculated from the moment of reaching cCR instead of 3-year overall survival of 67% calculated from diagnosis). This reduced the number of required patients with cCR from 264 to 224, but increased the required inclusions from 480 to approximately 740 patients at baseline. Conclusion: Substantial amendments were made prior to closure of enrolment of the SANO trial. These amendments do not affect the outcomes of the trial compared to the original protocol. The first results are expected late 2023. If active surveillance plus surgery as needed after neoadjuvant chemoradiotherapy for oesophageal cancer leads to non-inferior overall survival compared to standard oesophagectomy, active surveillance can be implemented as a standard of care
    corecore