29 research outputs found

    Simulating the opto-thermal processes involved in laser induced self-assembly of surface and sub-surface plasmonic nano-structuring

    Get PDF
    Nano-structuring of metals is one of the greatest challenges for the future of plasmonic and photonic devices. Such a technology calls for the development of ultra-fast, high-throughput and low cost fabrication techniques. Laser processing accounts for the aforementioned properties, representing an unrivalled tool towards the anticipated arrival of modules based in metallic nano-structures, with an extra advantage: the ease of scalability. Specifically, laser nano-structuring of an ultra-thin metal film or an alternating metal film on a substrate/metal film on a substrate results respectively on surface (metallic nanoparticles on the surface of the substrate) or subsurface (metallic nanoparticles embedded in a dielectric matrix) plasmonic patterns with many applications. In this work we investigate theoretically the photo-thermal processes involved in surface and sub-surface plasmonic nano-structuring and compare to experiments. To this end, we present a design process and develop functional plasmonic nano-structures with pre-determined morphology by tuning the annealing parameters like the laser fluence and wavelength and/or the structure parameters like the thickness of the metallic film and the volume ratio of the metal film on a substrate-metal composite. For the surface plasmonic nano-structuring we utilize the ability to tune the laser's wavelength to either match the absorption spectral profile of the metal or to be resonant with the plasma oscillation frequency, i.e. we utilize different optical absorption mechanisms that are size-selective. Thus, we overcome a great challenge of laser induced self assembly by combining simultaneously large-scale character with nanometer scale precision. For subsurface plasmonic nano-structuring, on the other hand, we utilize the temperature gradients that are developed spatially across the metal/dielectric nano-composite structure during the laser treatment. We find that the developed temperature gradients are strongly depended on the nanocrystalline character of the dielectric host which determines its thermal conductivity, the composition of the ceramic/metal and the total thickness of the nano-composite film. The aforementioned material parameters combined with the laser annealing parameters can be used to pre-design the final morphology of the sub-surface plasmonic structure. The proposed processes can serve as a platform that will stimulate further progress towards the engineering of plasmonic devices

    Sub-surface laser nanostructuring in stratified metal/dielectric media: a versatile platform towards flexible, durable and large-scale plasmonic writing

    Get PDF
    Laser nanostructuring of pure ultrathin metal layers or ceramic/metal composite thin films has emerged as a promising route for the fabrication of plasmonic patterns with applications in information storage, cryptography, and security tagging. However, the environmental sensitivity of pure Ag layers and the complexity of ceramic/metal composite film growth hinder the implementation of this technology to large-scale production, as well as its combination with flexible substrates. In the present work we investigate an alternative pathway, namely, starting from non-plasmonic multilayer metal/dielectric layers, whose growth is compatible with large scale production such as in-line sputtering and roll-to-roll deposition, which are then transformed into plasmonic templates by single-shot UV-laser annealing (LA). This entirely cold, large-scale process leads to a subsurface nanoconstruction involving plasmonic Ag nanoparticles (NPs) embedded in a hard and inert dielectric matrix on top of both rigid and flexible substrates. The subsurface encapsulation of Ag NPs provides durability and long-term stability, while the cold character of LA suits the use of sensitive flexible substrates. The morphology of the final composite film depends primarily on the nanocrystalline character of the dielectric host and its thermal conductivity. We demonstrate the emergence of a localized surface plasmon resonance, and its tunability depending on the applied fluence and environmental pressure. The results are well explained by theoretical photothermal modeling. Overall, our findings qualify the proposed process as an excellent candidate for versatile, large-scale optical encoding applications. Keywords : Ceramic materials; Composite films; Environmental technology; Film growth; Film preparation; Multilayer films; Multilayers; Nanocrystals; Optical data processing; Plasmons; Silver; Substrates; Surface plasmon resonance; Thin films; Ultrathin films, Laser annealing; Localised surface plasmon resonance; Multi-layer thin film; Nano-structuring; Plasmonics, Nanocomposite film

    Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction

    Get PDF
    An auxetic conductive cardiac patch (AuxCP) for the treatment of myocardial infarction (MI) is introduced. The auxetic design gives the patch a negative Poisson's ratio, providing it with the ability to conform to the demanding mechanics of the heart. The conductivity allows the patch to interface with electroresponsive tissues such as the heart. Excimer laser microablation is used to micropattern a re-entrant honeycomb (bow-tie) design into a chitosan-polyaniline composite. It is shown that the bow-tie design can produce patches with a wide range in mechanical strength and anisotropy, which can be tuned to match native heart tissue. Further, the auxetic patches are conductive and cytocompatible with murine neonatal cardiomyocytes in vitro. Ex vivo studies demonstrate that the auxetic patches have no detrimental effect on the electrophysiology of both healthy and MI rat hearts and conform better to native heart movements than unpatterned patches of the same material. Finally, the AuxCP applied in a rat MI model results in no detrimental effect on cardiac function and negligible fibrotic response after two weeks in vivo. This approach represents a versatile and robust platform for cardiac biomaterial design and could therefore lead to a promising treatment for MI

    Laser-matter interactions, phase changes and diffusion phenomena during laser annealing of plasmonic AlN:Ag templates and their applications in optical encoding

    Get PDF
    Nanocomposite thin films incorporating silver nanoparticles are emerging as photosensitive templates for optical encoding applications. However, a deep understanding of the fundamental physicochemical mechanisms occurring during laser-matter interactions is still lacking. In this work, the photosensitivity of AlN:Ag plasmonic nanocomposites is thoroughly examined and a series of UV laser annealing parameters, such as wavelength, fluence and the number of pulses are investigated. We report and study effects such as the selective crystallization of the AlN matrix, the enlargement of the Ag nanoparticle inclusions by diffusion of laser-heated Ag and the outdiffusion of Ag to the film's surface. Detailed optical calculations contribute to the identification and understanding of the aforementioned physical mechanisms and of their dependency on the laser processing parameters. We are then able to predetermine the plasmonic response of processed AlN:Ag nanocomposites and demonstrate its potential by means of optically encoding an overt or covert cryptographic pattern
    corecore