23 research outputs found

    Comparison of Sublimation 3D Scanning Sprays in Terms of Their Effect on the Resulting 3D Scan, Thickness, and Sublimation Time

    Get PDF
    This study compared eight sublimation scanning sprays in terms of their effect on 3D scanning results, coating thickness, and sublimation time. The work used an automated spraying system to ensure the same deposition conditions for all tested materials. All experiments were performed under the same environmental conditions to exclude the influence of the ambient environment on the coatings. All tested scanning sprays created coatings with thicknesses in the order of tens of micrometers that were detectable by the 3D scanner Atos III Triple Scan. The coatings must be applied carefully when accurate measurements are required. All used materials enabled the capture of the highly reflective surface of the Si-wafer. However, the differences between some sprays were significant. Sublimation time measurements showed that all coatings disappeared from the Si-wafer surface completely. Nevertheless, all coatings left visible traces on the mirror-like surface. They were easily wiped off with a cloth

    Selective Laser Melting Strategy for Fabrication of Thin Struts Usable in Lattice Structures

    Get PDF
    This paper deals with the selective laser melting (SLM) processing strategy for strut-lattice structure production which uses only contour lines and allows the porosity and roughness level to be managed based on ombination of the input and linear energy parameters

    Effect of Process Parameters and High-Temperature Preheating on Residual Stress and Relative Density of Ti6Al4V Processed by Selective Laser Melting

    Get PDF
    The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium
    corecore