11 research outputs found
Dax1 Associates with Esrrb and Regulates Its Function in Embryonic Stem Cells
13301甲第4169号博士(医学)金沢大学博士論文要旨Abstract 以下に掲載:Molecular and Cellular Biology 33(10) pp.2056-2066 2013. AMERICAN SOCIETY FOR MICROBIOLOGY. 共著者:Kousuke Uranishi, Tadayuki Akagi, Chuanhai Sun, Hiroshi Koide, Takashi Yokot
Esrrb directly binds to Gata6 promoter and regulates its expression with Dax1 and Ncoa3
Estrogen-related receptor beta (Esrrb) is expressed in embryonic stem (ES) cells and is involved in self-renewal ability and pluripotency. Previously, we found that Dax1 is associated with Esrrb and represses its transcriptional activity. Further, the disruption of the Dax1–Esrrb interaction increases the expression of the extra-embryonic endoderm marker Gata6 in ES cells. Here, we investigated the influences of Esrrb and Dax1 on Gata6 expression. Esrrb overexpression in ES cells induced endogenous Gata6 mRNA and Gata6 promoter activity. In addition, the Gata6 promoter was found to contain the Esrrb recognition motifs ERRE1 and ERRE2, and the latter was the responsive element of Esrrb. Associations between ERRE2 and Esrrb were then confirmed by biotin DNA pulldown and chromatin immunoprecipitation assays. Subsequently, we showed that Esrrb activity at the Gata6 promoter was repressed by Dax1, and although Dax1 did not bind to ERRE2, it was associated with Esrrb, which directly binds to ERRE2. In addition, the transcriptional activity of Esrrb was enhanced by nuclear receptor co-activator 3 (Ncoa3), which has recently been shown to be a binding partner of Esrrb. Finally, we showed that Dax1 was associated with Ncoa3 and repressed its transcriptional activity. Taken together, the present study indicates that the Gata6 promoter is activated by Esrrb in association with Ncoa3, and Dax1 inhibited activities of Esrrb and Ncoa3, resulting maintenance of the undifferentiated status of ES cells. © 2016 Elsevier Inc.Embargo Period 12 month
ETS-related transcription factors Etv4 and Etv5 are involved in proliferation and induction of differentiationassociated genes in embryonic stem (ES) cells
The pluripotency and self-renewal capacity of embryonic stem (ES) cells is regulated by several transcription factors. Here, we show that the ETS-related transcription factors Etv4 and Etv5 (Etv4/5) are specifically expressed in undifferentiated ES cells, and suppression of Oct3/4 results in down-regulation of Etv4/5. Simultaneous deletion of Etv4 and Etv5 (Etv4/5 double knock-out(dKO)) in ES cells resulted in a flat, epithelial cell-like appearance, whereas the morphology changed into compact colonies in a 2i medium (containing two inhibitors for GSK3 and MEK/ERK). Expression levels of self-renewal marker genes, including Oct3/4 and Nanog, were similar between wild-type and dKO ES cells, whereas proliferation of Etv4/5 dKO ES cells was decreased with overexpression of cyclin-dependent kinase inhibitors (p16/p19, p15, and p57). A differentiation assay revealed that the embryoid bodies derived from Etv4/5 dKO ES cells were smaller than the control, and expression of ectoderm marker genes, including Fgf5, Sox1, and Pax3, was not induced in dKO-derived embryoid bodies. Microarray analysis demonstrated that stem cell-related genes, including Tcf15, Gbx2, Lrh1, Zic3, and Baf60c, were significantly repressed in Etv4/5dKOEScells.Theartificial expression of Etv4 and/or Etv5 in Etv4/5 dKO ES cells induced re-expression of Tcf15 and Gbx2. These results indicate that Etv4 and Etv5, potentially through regulation of Gbx2 and Tcf15, are involved in the ES cell proliferation and induction of differentiation-associated genes in ES cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A
Similarity and dissimilarity in alterations of the gene expression profile associated with inhalational anesthesia between sevoflurane and desflurane.
Although sevoflurane is one of the most commonly used inhalational anesthetic agents, the popularity of desflurane is increasing to a level similar to that of sevoflurane. Inhalational anesthesia generally activates and represses the expression of genes related to xenobiotic metabolism and immune response, respectively. However, there has been no comprehensive comparison of the effects of sevoflurane and desflurane on the expression of these genes. Thus, we used a next-generation sequencing method to compare alterations in the global gene expression profiles in the livers of rats subjected to inhalational anesthesia by sevoflurane or desflurane. Our bioinformatics analyses revealed that sevoflurane and, to a greater extent, desflurane significantly activated genes related to xenobiotic metabolism. Our analyses also revealed that both anesthetic agents, especially sevoflurane, downregulated many genes related to immune response
PTEN-induced kinase 1 gene single-nucleotide variants as biomarkers in adjuvant chemotherapy for colorectal cancer: a retrospective study
Abstract Background Fluoropyrimidine-based postoperative adjuvant chemotherapy is globally recommended for high-risk stage II and stage III colon cancer. However, adjuvant chemotherapy is often associated with severe adverse events and is not highly effective in preventing recurrence. Therefore, discovery of novel molecular biomarkers of postoperative adjuvant chemotherapy to identify patients at increased risk of recurrent colorectal cancer is warranted. Autophagy (including mitophagy) is activated under chemotherapy-induced stress and contributes to chemotherapy resistance. Expression of autophagy-related genes and their single-nucleotide polymorphisms are reported to be effective predictors of chemotherapy response in some cancers. Our goal was to evaluate the relationship between single-nucleotide variants of autophagy-related genes and recurrence rates in order to identify novel biomarkers that predict the effect of adjuvant chemotherapy in colorectal cancer. Methods We analyzed surgical or biopsy specimens from 84 patients who underwent radical surgery followed by fluoropyrimidine-based adjuvant chemotherapy at Saitama Medical University International Medical Center between January and December 2016. Using targeted enrichment sequencing, we identified single-nucleotide variants and insertions/deletions in 50 genes, including autophagy-related genes, and examined their association with colorectal cancer recurrence rates. Results We detected 560 single-nucleotide variants and insertions/deletions in the target region. The results of Fisher’s exact test indicated that the recurrence rate of colorectal cancer after adjuvant chemotherapy was significantly lower in patients with the single-nucleotide variants (c.1018G > A [p C [p < 0.01]) of the mitophagy-related gene PTEN-induced kinase 1. Conclusions The two single-nucleotide variants of PINK1 gene may be biomarkers of non-recurrence in colorectal cancer patients who received postoperative adjuvant chemotherapy