7 research outputs found

    Thermal analysis of new transdermal devices for power transfer to ventricular assist devices

    Get PDF
    Different engineered approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Aiming to prevent infection, similar efforts have focused on optimizing the design features of drivelines used to transfer power to percutaneous ventricular assistance devices (VAD), omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. Moreover, we examined the impact of implant’s diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of 0.2 mm diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth [1]. Furthermore, we performed COMSOL simulations to investigate the electrothermal implications of conductive wires with different sizes for the power transfer to VADs. In our model, we simulate the electrical properties of the prototype’s wires, to confirm that it does not produce a significant body temperature rise. The skin model (Fig. 1a) mimics the multiple skin layer’ properties of epidermis, dermis, fat and muscle [2]. Also, we include a PDMS layer (5 mm thickness) that represents the silicon-based material of the conductive skin. During the study, different thicknesses of the polyurethane (PU) insulating coating were tested for the wire of 0.2 mm diameter. However, no significant improvement was observed when increasing the insulation layer, since the temperature difference in the model was due to the temperature skin gradient and not the electric current. In this model, the dimensions of both the inner copper diameter and the PU coating thickness were obtained from the manufacturer’s specifications (0.2030 mm and 0.0105 mm, respectively). Our results show that when the wires are subject to the peak voltage for VADs (~14.5 V) and a steady-state current of 1.2 A (Fig. 1b), the temperature increases 0.65°C in the core of the copper wires (Fig. 1c), due to the inrush current. Nonetheless, the surface temperature of the patch in the steady state remains around 0.02°C, indicating that there is no significant risk for skin injury from heat dissipation. This combination of experimental and computational findings will enable the design of new percutaneous medical devices to support therapies that require safe exchange of power, signal, and mass through the human body

    Transdermal wires for improved integration in vivo.

    Get PDF
    Alternative engineering approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Similar efforts have focused on optimizing the design features of percutaneous VAD drivelines with the aim to prevent infection, omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. We examined the impact of implant's diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of small diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth. We validated these effects by quantifying the infiltration of macrophages and the level of vascularization in the fibrotic zone, highlighting the critical role of size reduction for the benign integration of transdermal implants with skin. This insight on how the biophysical properties of implants impact local tissue reactions could enable new solutions on the transdermal transmission of power, signal, and mass in a broad range of medical devices

    Systems of conductive skin for power transfer in clinical applications

    No full text
    The primary aim of this article is to review the clinical challenges related to the supply of power in implanted left ventricular assist devices (LVADs) by means of transcutaneous drivelines. In effect of that, we present the preventive measures and post-operative protocols that are regularly employed to address the leading problem of driveline infections. Due to the lack of reliable wireless solutions for power transfer in LVADs, the development of new driveline configurations remains at the forefront of different strategies that aim to power LVADs in a less destructive manner. To this end, skin damage and breach formation around transcutaneous LVAD drivelines represent key challenges before improving the current standard of care. For this reason, we assess recent strategies on the surface functionalization of LVAD drivelines, which aim to limit the incidence of driveline infection by directing the responses of the skin tissue. Moreover, we propose a class of power transfer systems that could leverage the ability of skin tissue to effectively heal short diameter wounds. In this direction, we employed a novel method to generate thin conductive wires of controllable surface topography with the potential to minimize skin disruption and eliminate the problem of driveline infections. Our initial results suggest the viability of the small diameter wires for the investigation of new power transfer systems for LVADs. Overall, this review uniquely compiles a diverse number of topics with the aim to instigate new research ventures on the design of power transfer systems for IMDs, and specifically LVADs.ISSN:0175-7571ISSN:1432-101

    Transdermal wires for improved integration in vivo

    No full text
    Alternative engineering approaches have led the design of implants with controlled physical features to minimize adverse effects in biological tissues. Similar efforts have focused on optimizing the design features of percutaneous VAD drivelines with the aim to prevent infection, omitting however a thorough look on the implant-skin interactions that govern local tissue reactions. Here, we utilized an integrated approach for the biophysical modification of transdermal implants and their evaluation by chronic sheep implantation in comparison to the standard of care VAD drivelines. We developed a novel method for the transfer of breath topographical features on thin wires with modular size. We examined the impact of implant's diameter, surface topography, and chemistry on macroscopic, histological, and physical markers of inflammation, fibrosis, and mechanical adhesion. All implants demonstrated infection-free performance. The fibrotic response was enhanced by the increasing diameter of implants but not influenced by their surface properties. The implants of small diameter promoted mild inflammatory responses with improved mechanical adhesion and restricted epidermal downgrowth, in both silicone and polyurethane coated transdermal wires. On the contrary, the VAD drivelines with larger diameter triggered severe inflammatory reactions with frequent epidermal downgrowth. We validated these effects by quantifying the infiltration of macrophages and the level of vascularization in the fibrotic zone, highlighting the critical role of size reduction for the benign integration of transdermal implants with skin. This insight on how the biophysical properties of implants impact local tissue reactions could enable new solutions on the transdermal transmission of power, signal, and mass in a broad range of medical devices.ISSN:2772-9508ISSN:2772-951

    Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies

    No full text
    Hydrostatic pressure (HP) and osmotic stress (OS) play an important role in various biological processes, such as cell proliferation and differentiation. In contrast to canonical mechanical signals transmitted through the anchoring points of the cells with the extracellular matrix, the physical and molecular mechanisms that transduce HP and OS into cellular functions remain elusive. Three-dimensional cell cultures show great promise to replicate physiologically relevant signals in well-defined host bioreactors with the goal of shedding light on hidden aspects of the mechanobiology of HP and OS. This review starts by introducing prevalent mechanisms for the generation of HP and OS signals in biological tissues that are subject to pathophysiological mechanical loading. We then revisit various mechanisms in the mechanotransduction of HP and OS, and describe the current state of the art in bioreactors and biomaterials for the control of the corresponding physical signals.ISSN:2772-950

    Building an interdisciplinary program of cardiovascular research at the Swiss Federal Institute of Technology– the ETHeart story

    No full text
    In this backstory, researchers from Swiss Federal Institute of Technology (ETH Zurich) who initiated an interdisciplinary program to generate innovative solutions for different cardiovascular diseases, such as myocardial infarction, valvular replacement, and movement-based rehabilitation therapy, discuss the benefits and challenges of interdisciplinary research.ISSN:2589-004

    The importance of sleep-disordered breathing in cardiovascular disease

    No full text
    corecore