3 research outputs found

    Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts.

    No full text
    PURPOSE:Chordae rupture is one of the main lesions observed in traumatic heart events that might lead to severe tricuspid valve (TV) regurgitation. TV regurgitation following chordae rupture is often well tolerated with few or no symptoms for most patients. However, early repair of the TV is of great importance, as it might prevent further exacerbation of the regurgitation due to remodeling responses. To understand how TV regurgitation develops following this acute event, we investigated the changes on TV geometry, mechanics, and function of ex-vivo porcine hearts following chordae rupture. METHODS:Sonomicrometry techniques were employed in an ex-vivo heart apparatus to identify how the annulus geometry alters throughout the cardiac cycle after chordae rupture, leading to the development of TV regurgitation. RESULTS:We observed that the TV annulus significantly dilated (~9% in area) immediately after chordae rupture. The annulus area and circumference ranged from 11.4 ± 2.8 to 13.3 ± 2.9 cm2 and from 12.5 ± 1.5 to 13.5 ± 1.3 cm, respectively, during the cardiac cycle for the intact heart. After chordae rupture, the annulus area and circumference were larger and ranged from 12.3 ± 3.0 to 14.4 ± 2.9 cm2 and from 13.0 ± 1.5 to 14.0 ± 1.2 cm, respectively. CONCLUSIONS:In our ex-vivo study, we showed for the first time that the TV annulus dilates immediately after chordae rupture. Consequently, secondary TV regurgitation may be developed because of such changes in the annulus geometry. In addition, the TV leaflet and the right ventricle myocardium are subjected to a different mechanical environment, potentially causing further negative remodeling responses and exacerbating the detrimental outcomes of chordae rupture
    corecore