8 research outputs found

    A method for obtaining a stable lignin: polar organic solvent composition via mild solvolytic modifications

    Get PDF
    The present invention relates to a process the production of a crude liquid lignin oil (CLO), said process comprises the steps of providing a lignin-rich solid feedstock and subjecting the lignin-rich solid feedstock to a treatment in a polar organic solvent in the absence of an effective amount of added reaction promoter, such as a heterogeneous and/or homogeneous catalyst and/or hydrogen, and providing a lignin composition, said treatment comprises a step of contacting said lignin-rich solid feedstock with a polar organic solvent under operating conditions of an operating temperature up to 210 °C, an operating pressure lower than 50 bar and a residence time up to 240 minutes, wherein the ratio (w/v) of lignin (in lignin- rich feedstock) to polar organic solvent ranges between 1:1.5 and 1:15, or between 1:2 and 1:10 or between 1:2 and 1:5

    Scaling-up catalytic depolymerisation of lignin: performance criteria for industrial operation

    No full text
    Much scientific research has been carried to convert lignin into valuable biobased chemicals or fuels. Most of these studies had the objective to develop active and selective catalysts for effective lignin depolymerization; this with little regard for the parameters that are necessary for later commercialization of these technologies. In this work, we have chosen as a case study a process that has been extensively studied and reported on earlier by our group. This process converts (technical) lignin into mainly aromatic compounds, using supercritical ethanol and a Cu–Mg–Al mixed oxide catalyst. Here, we investigate the impact of scaling up this process from lab to bench scale. More specifically, we study the influence of higher lignin loadings than previously reported on, amongst other parameters, monomer yield, solvent losses and catalyst fouling; all of which being critical performance parameters for industrial operation. After we examined the technical feasibility of our process at 4 L scale, we further looked into the economic viability of this technology, by introducing two performance criteria, both of which being a function of lignin monomer yield. The ratios (g/g) of yield over total feed, and yield over ethanol losses are presented as qualitative indicators for capital expenditure (CAPEX) and operational expenditure (OPEX), respectively. This exercise sheds some much needed light on the trade-off between yield optimization and cost minimization

    Developing a feasible process for 2G-lignin conversion into biofuels and chemicals

    No full text
    Lignin is one of the major components of lignocellulosic biomass, constituting 15-30 % of the weight and approximately 40 % of the energy content depending on the source. Currently the lignin produced in 2G bio-ethanol plants is mainly used for one-site energy production. At Eindhoven University of Technology (Inorganic Material Chemistry group) a method was explored to depolymerize lignin in super critical ethanol with cheap non-noble catalysts to produce a mixture of monomeric aromatics. The product might be applied directly as a bio marine fuel, or as a source for chemical building blocks (Resins), octane boosters or biofuels when blended with gasolines. The primary goal for pilot activities is to produce Lignin Crude Oil from lignin with a viscosity spec < 1000 cSt at 40C, on a ton scale and to collect information for designing a demo plant with the aim of having an economically viable process. As a secondary step the Lignin Crude Oil is fractionated and products tested for several applications

    Environmental economics of lignin derived transport fuels

    No full text
    \u3cp\u3eThis paper explores the environmental and economic aspects of fast pyrolytic conversion of lignin, obtained from 2G ethanol plants, to transport fuels for both the marine and automotive markets. Various scenarios are explored, pertaining to aggregation of lignin from several sites, alternative energy carries to replace lignin, transport modalities, and allocation methodology. The results highlight two critical factors that ultimately determine the economic and/or environmental fuel viability. The first factor, the logistics scheme, exhibited the disadvantage of the centralized approach, owing to prohibitively expensive transportation costs of the low energy-dense lignin. Life cycle analysis (LCA) displayed the second critical factor related to alternative energy carrier selection. Natural gas (NG) chosen over additional biomass boosts well-to-wheel greenhouse gas emissions (WTW GHG) to a level incompatible with the reduction targets set by the U.S. renewable fuel standard (RFS). Adversely, the process’ economics revealed higher profits vs. fossil energy carrier.\u3c/p\u3

    Geometric distortion assessment in 3T MR images used for treatment planning in cranial Stereotactic Radiosurgery and Radiotherapy.

    No full text
    Magnetic Resonance images (MRIs) are employed in brain Stereotactic Radiosurgery and Radiotherapy (SRS/SRT) for target and/or critical organ localization and delineation. However, MRIs are inherently distorted, which also impacts the accuracy of the Magnetic Resonance Imaging/Computed Tomography (MRI/CT) co-registration process. In this phantom-based study, geometric distortion is assessed in 3T T2-weighted images (T2WIs), while the efficacy of an MRI distortion correction technique is also evaluated. A homogeneous polymer gel-filled phantom was CT-imaged before being irradiated with 26 4-mm Gamma Knife shots at predefined locations (reference control points). The irradiated phantom was MRI-scanned at 3T, implementing a T2-weighted protocol suitable for SRS/SRT treatment planning. The centers of mass of all shots were identified in the 3D image space by implementing an iterative localization algorithm and served as the evaluated control points for MRI distortion detection. MRIs and CT images were spatially co-registered using a mutual information algorithm. The inverse transformation matrix was applied to the reference control points and compared with the corresponding MRI-identified ones to evaluate the overall spatial accuracy of the MRI/CT dataset. The mean image distortion correction technique was implemented, and resulting MRI-corrected control points were compared against the corresponding reference ones. For the scanning parameters used, increased MRI distortion (>1mm) was detected at areas distant from the MRI isocenter (>5cm), while median radial distortion was 0.76mm. Detected offsets were slightly higher for the MRI/CT dataset (0.92mm median distortion). The mean image distortion correction improves geometric accuracy, but residual distortion cannot be considered negligible (0.51mm median distortion). For all three datasets studied, a statistically significant positive correlation between detected spatial offsets and their distance from the MRI isocenter was revealed. This work contributes towards the wider adoption of 3T imaging in SRS/SRT treatment planning. The presented methodology can be employed in commissioning and quality assurance programmes of corresponding treatment workflows

    Exploring orange peel treatment with deep eutectic solvents and diluted organic acids

    Get PDF
    The disintegration of orange peel waste in deep eutectic solvents and diluted organic acids is presented in this work. The albedo and flavedo layers of the peel were studied separately, showing faster disintegration of the latter. Addition of water to the deep eutectic solvents lowered the amount of remaining solids and improved the disintegration times. These improvements are subscribed to a decrease in viscosity upon deep eutectic solvent dilution. Each of the individual deep eutectic solvent components were diluted and subjected to the same disintegration tests. The corresponding diluted organic acids showed similar orange peel disintegration performance as the tested deep eutectic solvents, whereas dilutions of the other counterparts did not show any activity. Hence, the active deep eutectic solvent components during orange peel treatment are considered to be their organic acids. Flavonoids and essential oils were released during the treatment, offering new opportunities for the development of orange peel waste valorisation routes
    corecore