25 research outputs found

    Anti de Sitter 5D black hole solutions with a self-interacting bulk scalar field: a potential reconstruction approach

    Full text link
    We construct asymptotically AdS black hole solutions, with a self-interacting bulk scalar field, in the context of 5D general relativity. As the observable universe is characterized by spatial flatness, we focus to solutions where the horizon of the black hole, and subsequently all 3D hypersurfaces for fixed radial coordinate,have zero spatial curvature. We examine two cases for the black hole scalar hair: a) an exponential decaying scalar field profile and b) an inverse power scalar field profile. The scalar black hole solutions we present in this paper, are characterized by four functions f(r), a(r), phi(r) and V(phi(r)). Only the functions phi(r) and a(r) are determined analytically, while the functions f(r) and V(phi(r)) are expressed semi-analytically, by integral formulas in terms of a(r). We present our numerical results in figures and we study in detail the characteristic properties of our solutions. We also note that the potential we obtain has a non-convex form in agreement with the corresponding "no hair theorem" for AdS space-times.Comment: 15 pages, 7 figure

    Raychaudhuri's equation and aspects of relativistic charged collapse

    Full text link
    We use the Raychaudhuri equation to probe certain aspects related to the gravitational collapse of a charged medium. The aim is to identify the stresses the Maxwell field exerts on the fluid and discuss their potential implications. Particular attention is given to those stresses that resist contraction. After looking at the general case, we consider the two opposite limits of poor and high electrical conductivity. In the former there are electric fields but no currents, while in the latter the situation is reversed. When the conductivity is low, we find that the main agents acting against the collapse are the Coulomb forces triggered by the presence of an excess charge. At the ideal Magnetohydrodynamic (MHD) limit, on the other hand, the strongest resistance seems to come from the tension of the magnetic forcelines. In either case, we discuss whether and how the aforementioned resisting stresses may halt the contraction and provide a set of conditions making this likely to happen.Comment: Revised version, to appear in PR

    Finsler Branes and Quantum Gravity Phenomenology with Lorentz Symmetry Violations

    Full text link
    A consistent theory of quantum gravity (QG) at Planck scale almost sure contains manifestations of Lorentz local symmetry violations (LV) which may be detected at observable scales. This can be effectively described and classified by models with nonlinear dispersions and related Finsler metrics and fundamental geometric objects (nonlinear and linear connections) depending on velocity/ momentum variables. We prove that the trapping brane mechanism provides an accurate description of gravitational and matter field phenomena with LV over a wide range of distance scales and recovering in a systematic way the general relativity (GR) and local Lorentz symmetries. In contrast to the models with extra spacetime dimensions, the Einstein-Finsler type gravity theories are positively with nontrivial nonlinear connection structure, nonholonomic constraints and torsion induced by generic off-diagonal coefficients of metrics, and determined by fundamental QG and/or LV effects.Comment: latex2e, 11pt, 34 pages, the version accepted to Class. Quant. Gra

    Weak Gravitational Field in Finsler-Randers Space and Raychaudhuri Equation

    Full text link
    The linearized form of the metric of a Finsler - Randers space is studied in relation to the equations of motion, the deviation of geodesics and the generalized Raychaudhuri equation are given for a weak gravitational field. This equation is also derived in the framework of a tangent bundle. By using Cartan or Berwald-like connections we get some types "gravito - electromagnetic" curvature. In addition we investigate the conditions under which a definite Lagrangian in a Randers space leads to Einstein field equations under the presence of electromagnetic field. Finally, some applications of the weak field in a generalized Finsler spacetime for gravitational waves are given.Comment: 22 pages, matches version published in GER

    The General Very Special Relativity in Finsler Cosmology

    Full text link
    General Very Special Relativity (GVSR) is the curved space-time of Very Special Relativity (VSR) proposed by Cohen and Glashow. The geometry of GVSR possesses a line element of Finsler Geometry proposed by Bogoslovsky. We calculate the Einstein field equations and derive a modified FRW cosmology, for an osculating Riemannian space. The Friedman equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial spurionic vector field introduced into the metric, gives back an estimation of the energy evolution and inflationComment: 14 pages- accepted to Physical Review

    Friedmann Robertson-Walker model in generalised metric space-time with weak anisotropy

    Full text link
    A generalized model of space-time is given, taking into consideration the anisotropic structure of fields which are depended on the position and the direction (velocity).In this framework a generalized FRW-metric the Raychaudhouri and Friedmann equations are studied.A long range vector field of cosmological origin is considered in relation to the physical geometry of space-time in which Cartan connection has a fundamental role.The generalised Friedmann equations are produced including anisotropic terms.The variation of anisotropy ztz_t is expressed in terms of the Cartan torsion tensor of the Finslerian space-time.A possible estimation of the anisotropic parameter ztz_t can be achieved with the aid of the de-Sitter model of the empty flat universe with weak anisotropy. Finally a physical generalisation for the model of inflation is also studied.Comment: 21 pages- to appear in GR

    Stringy Space-Time Foam and High-Energy Cosmic Photons

    Full text link
    In this review, I discuss briefly stringent tests of Lorentz-violating quantum space-time foam models inspired from String/Brane theories, provided by studies of high energy Photons from intense celestial sources, such as Active Galactic Nuclei or Gamma Ray Bursts. The theoretical models predict modifications to the radiation dispersion relations, which are quadratically suppressed by the string mass scale, and time delays in the arrival times of photons (assumed to be emitted more or less simultaneously from the source), which are proportional to the photon energy, so that the more energetic photons arrive later. Although the astrophysics at the source of these energetic photons is still not understood, and such non simultaneous arrivals, that have been observed recently, might well be due to non simultaneous emission as a result of conventional physics effects, nevertheless, rather surprisingly, the observed time delays can also fit excellently the stringy space-time foam scenarios, provided the space-time defect foam is inhomogeneous. The key features of the model, that allow it to evade a plethora of astrophysical constraints on Lorentz violation, in sharp contrast to other field-theoretic Lorentz-violating models of quantum gravity, are: (i) transparency of the foam to electrons and in general charged matter, (ii) absence of birefringence effects and (iii) a breakdown of the local effective lagrangian formalism.Comment: 26 pages Latex, 4 figures, uses special macros. Keynote Lecture in the International Conference "Recent Developments in Gravity" (NEB14), Ioannina (Greece) June 8-11 201
    corecore