15 research outputs found

    Significant spatial gradients in new particle formation frequency in Greece during summer

    Get PDF
    Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation (NPF). The study area is characterized by high solar intensity and fast photochemistry and has moderate to low fine particulate matter levels during the summer. The average PM2.5 levels were relatively uniform across the examined sites. The NPF frequency during summer varied from close to zero in the southwestern parts of Greece to more than 60 % in the northern, central, and eastern regions. The mean particle growth rate for each station varied between 3.4 and 8 nm h−1, with an average rate of 5.7 nm h−1. At most of the sites there was no statistical difference in the condensation sink between NPF event and non-event days, while lower relative humidity was observed during the events. The high-NPF-frequency sites in the north and northeast were in close proximity to both coal-fired power plants (high emissions of SO2) and agricultural areas with some of the highest ammonia emissions in the country. The southern and western parts of Greece, where NPF was infrequent, were characterized by low ammonia emissions, while moderate levels of sulfuric acid were estimated (107 molec. cm−3) in the west. Although the emissions of biogenic volatile organic compounds were higher in western and southern sectors, they did not appear to lead to enhanced frequency of NPF. The infrequent events at these sites occurred when the air masses had spent a few hours over areas with agricultural activities and thus elevated ammonia emissions. Air masses arriving at the sites directly from the sea were not connected with atmospheric NPF. These results support the hypothesis that ammonia and/or amines limit new particle formation in the study area.</p

    Spatial variability of groundwater quality of Sabour block, Bhagalpur district (Bihar, India)

    Get PDF
    This paper examines the quality of groundwater of Sabour block, Bhagalpur district of Bihar state, which lies on the southern region of Indo-Gangetic plains in India. Fifty-nine samples from different sources of water in the block have been collected to determine its suitability for drinking and irrigational purposes. From the samples electrical conductivity (EC), pH and concentrations of Calcium (Ca2+), Magnesium (Mg2+), Sodium (Na+), Potassium (K+), carbonate ion (CO 2−3), Bicarbonate ion (HCO -3), Chloride ion (Cl−), and Fluoride (F−) were determined. Surface maps of all the groundwater quality parameters have been prepared using radial basis function (RBF) method. RBF model was used to interpolate data points in a group of multi-dimensional space. Root Mean Square Error (RMSE) is employed to scrutinize the best fit of the model to compare the obtained value. The mean value of pH, EC, Ca2+, Mg2+, Na+, K+, HCO3 −, Cl−, and F− are found to be 7.26, 0.69, 38.98, 34.20, 16.92, 1.19, 0.02, and 0.28, respectively. Distribution of calcium concentration is increasing to the eastern part and K+ concentrations raise to the downstream area in the southwestern part. Low pH concentrations (less than 6.71) occur in eastern part of the block. Spatial variations of hardness in Sabour block portraying maximum concentration in the western part and maximum SAR (more than 4.23) were recorded in the southern part. These results are not exceeding for drinking and irrigation uses recommended by World Health Organization. Therefore, the majority of groundwater samples are found to be safe for drinking and irrigation management practices
    corecore