784 research outputs found

    Search for TeV γ\gamma -rays from H1426+428 during 2004-07 with the TACTIC telescope

    Get PDF
    The BL Lac object H1426+428 (z0.129z\equiv 0.129) is an established source of TeV γ\gamma-rays and detections of these photons from this object also have important implications for estimating the Extragalactic Background Light (EBL) in addition to the understanding of the particle acceleration and γ\gamma-ray production mechanisms in the AGN jets. We have observed this source for about 244h in 2004, 2006 and 2007 with the TACTIC γ\gamma-ray telescope located at Mt. Abu, India. Detailed analysis of these data do not indicate the presence of any statistically significant TeV γ\gamma-ray signal from the source direction. Accordingly, we have placed an upper limit of 1.18×1012\leq1.18\times10^{-12} photonsphotons cm2cm^{-2} s1s^{-1} on the integrated γ\gamma-ray flux at 3σ\sigma significance level.Comment: 11 pages, 5 figures accepted for publication in Journal of Physics G: Nuclear and Particle Physic

    Crystal and Molecular Structures of Mothyl Pluviatilol

    Get PDF

    Very High Energy gamma-ray observations of Mrk 501 using TACTIC imaging gamma-ray telescope during 2005-06

    Full text link
    In this paper we report on the Markarian 501 results obtained during our TeV γ\gamma-ray observations from March 11 to May 12, 2005 and February 28 to May 7, 2006 for 112.5 hours with the TACTIC γ\gamma-ray telescope. During 2005 observations for 45.7 hours, the source was found to be in a low state and we have placed an upper limit of 4.62 ×\times 1012^{-12} photons cm2^{-2} s1^{-1} at 3σ\sigma level on the integrated TeV γ\gamma-ray flux above 1 TeV from the source direction. However, during the 2006 observations for 66.8h, detailed data analysis revealed the presence of a TeV γ\gamma-ray signal from the source with a statistical significance of 7.5σ\sigma above EγE_{\gamma}\geq 1 TeV. The time averaged differential energy spectrum of the source in the energy range 1-11 TeV is found to match well with the power law function of the form (dΦ/dE=f0EΓd\Phi/dE=f_0 E^{-\Gamma}) with f0=(1.66±0.52)×1011cm2s1TeV1f_0=(1.66\pm0.52)\times 10^{-11}cm^{-2}s^{-1}TeV^{-1} and Γ=2.80±0.27\Gamma=2.80\pm0.27.Comment: 16 pages and 8 Figures Accepted for publication in the Journal of Physics

    Artificial Neural Network-based error compensation procedure for low-cost encoders

    Full text link
    An Artificial Neural Network-based error compensation method is proposed for improving the accuracy of resolver-based 16-bit encoders by compensating for their respective systematic error profiles. The error compensation procedure, for a particular encoder, involves obtaining its error profile by calibrating it on a precision rotary table, training the neural network by using a part of this data and then determining the corrected encoder angle by subtracting the ANN-predicted error from the measured value of the encoder angle. Since it is not guaranteed that all the resolvers will have exactly similar error profiles because of the inherent differences in their construction on a micro scale, the ANN has been trained on one error profile at a time and the corresponding weight file is then used only for compensating the systematic error of this particular encoder. The systematic nature of the error profile for each of the encoders has also been validated by repeated calibration of the encoders over a period of time and it was found that the error profiles of a particular encoder recorded at different epochs show near reproducible behavior. The ANN-based error compensation procedure has been implemented for 4 encoders by training the ANN with their respective error profiles and the results indicate that the accuracy of encoders can be improved by nearly an order of magnitude from quoted values of ~6 arc-min to ~0.65 arc-min when their corresponding ANN-generated weight files are used for determining the corrected encoder angle.Comment: 16 pages, 4 figures. Accepted for Publication in Measurement Science and Technology (MST
    corecore