3 research outputs found

    Electrochemically Controlled 2D Assembly of Paddle-Wheel Diruthenium Complexes on the Au(111) Surface and Identification of Their Redox States

    No full text
    The 2D molecular assemblies of chloride-coordinated mixed-valence diruthenium complexes, each possessing phenyl, naphtyl, or anthracenyl moieties, were examined on an Au(111) at electrochemical interface. In situ scanning tunneling microscopy images revealed a clear dependence of the molecular assembly on both the nature of the aryl functional groups and on the redox state of the dinuclear ruthenium complex, either chloride-coordinated Ru<sup>II</sup>/Ru<sup>III</sup> or noncoordinated Ru<sup>II</sup>/Ru<sup>II</sup>. At potentials where the Ru<sup>II</sup>/Ru<sup>III</sup> and Ru<sup>II</sup>/Ru<sup>II</sup> redox states were in equilibrium, two distinct redox states were clearly identified at the single-molecular level. We found that manipulating both the electrochemical potential and the aryl functional group substitution was important for controlling the 2D molecular assembly of a chloride-coordinated diruthenium complex on an Au(111) surface

    Direct Analysis of Lipophilic Antioxidants of Olive Oils Using Bicontinuous Microemulsions

    No full text
    Quantitative analyses of olive oil for lipophilic antioxidants, such as α-tocopherol and phenolics, by simple electrochemical measurements were conducted in a bicontinuous microemulsion (BME), which was bicontinuously composed of saline and toluene microphases with a surfactant system. Lipophilic antioxidants in oils were directly monitored in BME solutions using a lipophilic, fluorinated nanocarbon-film electrode (F–ECR). The combination of a well-balanced BME and extremely biased electrodes, such as strongly hydrophilic indium/tin oxide and strongly lipophilic (hydrophobic) F–ECR, allowed individual monitoring of hydrophilic and lipophilic antioxidants in the same BME solution without any required extraction. Furthermore, values for the charge <i>Q</i>, integrated from observed currents, showed good linear relationships with the results of conventional assays for antioxidant activity, namely, total phenolics and oxygen radical absorbance capacity assays, even with practical food samples. This proposed methodology provided a very simple, rapid, easily serviceable, and highly reproducible analysis that possesses great potential for applications to a wide range of chemical mixtures, in terms of analyte and media, beyond food oils

    Simultaneous Electrochemical Analysis of Hydrophilic and Lipophilic Antioxidants in Bicontinuous Microemulsion

    No full text
    Qualitative and quantitative analyses of hydrophilic and lipophilic antioxidants, such as polyphenols, by simple electrochemical measurements were conducted in a bicontinuous microemulsion (BME), in which water and oil phases coexisted bicontinuously on a microscopic scale. Hydrophilic and lipophilic antioxidants were individually monitored in the same BME solution using a hydrophilic indium tin oxide (ITO) electrode and a lipophilic fluorinated nanocarbon film electrode (F-ECR), respectively. The combination of well-balanced BME and extremely biased electrodes, such as ITO and F-ECR, in terms of hydrophilic–lipophilic balance allowed us to achieve individual monitoring of hydrophilic and lipophilic antioxidants in the same BME solution without extraction. Furthermore, the antioxidant activities of functional liquid foods, such as coffee and olive oil, were also evaluated by means of electrochemical measurements in BME solutions containing analytes in concentrations of several percent. The technique we propose provides a very simple, rapid, easily serviceable, and highly reproducible analysis and can be extended to a wide range of analytes and media
    corecore