7 research outputs found

    CFD Simulations – Efficient Tool for Designers of Industrial HVAC Applications

    Get PDF
    The aim of this study is to design industrial ventilation in the production hall. With respect to the many parameters which influence the appropriate proposal of industrial ventilation that need to be considered, there is a good chance for miscalculations when design the industrial ventilation. Especially when the heat loads from technology threaten the stability of construction of the building. There are two different ways of solution of aeration in the aluminium plant. There is only a natural ventilation using outside air in case of melting of aluminium and an adiabatic cooling for air inlet combined with natural ventilation. The results and practice has shown, that to use only an outside air is not sufficient and the temperature in the hall is really very high. Adiabatic cooling decreases the air inlet temperature in the production hall and improves the working conditions. A thermovision mapping of the technology was used prior to start the CFD modelling. The simulation emphasize the important effect of design and location of different elements on the functionality of ventilation proposal

    Parametric study of the energy potential of a building’s envelope with integrated energy-active elements

    Get PDF
    Building structures with integrated energy-active elements (BSIEAE) present a progressive alternative for building construction with multifunctional energy functions. The aim was to determine the energy potential of a building envelope with integrated energy-active elements in the function of direct-heating, semi-accumulation and accumulation of large-area radiant heating. The research methodology consists in an analysis of building structures with energy-active elements, creation of mathematical-physical models based on the simplified definition of heat and mass transfer in radiant large-area heating, and a parametric study of the energy potential of individual variants of technical solutions. The results indicate that the increase in heat loss due to the location of the tubes in the structure closer to the exterior is negligible for Variant II, semi-accumulation heating, and Variant III, accumulation heating, as compared to Variant I, direct heating, it is below 1 % of the total delivered heat flux. The direct heat flux to the heated room is 89.17 %, 73.36 %, and 58.46 % of the total heat flux for Variant I, Variant II and Variant III, respectively. For Variant II and Variant III, the heat storage accounts for 14.84 %, and 29.86 % of the total heat flux, respectively. Variants II and III appear to be promising in terms of heat/cool accumulation with an assumption of lower energy demand (at least 10 %) than for low inertia walls. We plan to extend these simplified parametric studies with dynamic computer simulations to optimise the design and composition of the panels with integrated energy-active elements

    Parametric study of the energy potential of a building’s envelope with integrated energy-active elements

    Get PDF
    Building structures with integrated energy-active elements (BSIEAE) present a progressive alternative for building construction with multifunctional energy functions. The aim was to determine the energy potential of a building envelope with integrated energy-active elements in the function of direct-heating, semi-accumulation and accumulation of large-area radiant heating. The research methodology consists in an analysis of building structures with energy-active elements, creation of mathematical-physical models based on the simplified definition of heat and mass transfer in radiant large-area heating, and a parametric study of the energy potential of individual variants of technical solutions. The results indicate that the increase in heat loss due to the location of the tubes in the structure closer to the exterior is negligible for Variant II, semi-accumulation heating, and Variant III, accumulation heating, as compared to Variant I, direct heating, it is below 1 % of the total delivered heat flux. The direct heat flux to the heated room is 89.17 %, 73.36 %, and 58.46 % of the total heat flux for Variant I, Variant II and Variant III, respectively. For Variant II and Variant III, the heat storage accounts for 14.84 %, and 29.86 % of the total heat flux, respectively. Variants II and III appear to be promising in terms of heat/cool accumulation with an assumption of lower energy demand (at least 10 %) than for low inertia walls. We plan to extend these simplified parametric studies with dynamic computer simulations to optimise the design and composition of the panels with integrated energy-active elements

    Conics adound us

    No full text

    Experience in Researching and Designing an Innovative Way of Operating Combined Building–Energy Systems Using Renewable Energy Sources

    No full text
    This study describes our experience in researching and designing an innovative way of operating combined building–energy systems using renewable energy sources. We used the concepts of the ISOMAX integrated building–energy system’s patented technical solution, which we have long been exploring and have developed various novel and original solutions, as inspiration for our research. A consistent peak heat/cooling supply is a key component of the patented ISOMAX system, which has also been proven in its use in many buildings. Energy systems are no longer dependent on unreliable, unpredictable, and hard-to-forecast geothermal and solar energy because of the peak energy source. We had to improve the original design to guarantee the efficient, comfortable, and dependable operation of all the energy systems in the building. We increased the capacity of the ventilation system by including a peak heat/cooling source, a short-term heat/cooling storage tank, and the option of using an air handling unit with heat recovery or a water/air heat exchanger. The addition of terminal elements for heating, cooling, and ventilation systems was also made, along with including a solar system, a wind turbine, and the potential for waste heat recovery. Our study led to the creation of a unique operating model that, with the building management system, optimizes all of the energy systems and heating/cooling sources. The utility model SK 5749 Y1 analyzes the various alternatives in great detail

    Contribution to Active Thermal Protection Research—Part 2 Verification by Experimental Measurement

    No full text
    This article is closely related to the oldest article titled Contribution to Active Thermal Protection Research—Part 1 Analysis of Energy Functions by Parametric Study. It is a continuation of research that focuses on verifying the energy potential and functions of so-called active thermal protection (ATP). As mentioned in the first part, the amount of thermal energy consumed for heating buildings is one of the main parameters that determine their future design, especially the technical equipment. The issue of reducing the consumption of this energy is implemented in various ways, such as passive thermal protection, i.e., by increasing the thermal insulation parameters of the individual materials of the building envelope or by optimizing the operation of the technical equipment of the buildings. On the other hand, there are also methods of active thermal protection that aim to reduce heat leakage through nontransparent parts of the building envelope. This methodology is based on the validation of the results of a parametric study of the dynamic thermal resistance (DTR) and the heat fluxes to the interior and exterior from the ATP for the investigated envelope of the experimental house EB2020 made of aerated concrete blocks, presented in the article “Contribution to the research on active thermal protection—Part 1, Analysis of energy functions by the parametric study”, by long-term experimental measurements. The novelty of the research lies in the involvement of variant-peak heat/cooling sources in combination with RES and in creating a new, original way of operating energy systems with the possibility of changing and combining the operating modes of the ATP. We have verified the operation of the experimental house in the energy functions of thermal barrier, heating/cooling with RES, and without RES and ATP. The energy saving when using RES and ATP is approximately 37%. Based on the synthesis and induction of analogous forms of the results of previous research into recommendations for the development of building envelopes with energy-active elements, we present further possible outcomes in the field of ATP, as well as already realized and upcoming prototypes of thermal insulation panels
    corecore