167 research outputs found

    Bis[N,N-bis­(1-allyl-1H-benzimidazol-2-ylmethyl-κN 3)benzyl­amine-κN]cadmium dipicrate

    Get PDF
    The crystal structure of the title compound, [Cd(C29H29N5)2](C6H2N3O7)2, consists of CdII complex cations and picrate anions. In the complex cation, the CdII ion is chelated by two bis­(1-allyl­benzimidazol-2-ylmeth­yl)benzyl­amine (babb) ligands in a distorted octa­hedral geometry. Extensive C—H⋯O hydrogen bonding occurs between cations and anions in the crystal structure

    A Locality-based Neural Solver for Optical Motion Capture

    Full text link
    We present a novel locality-based learning method for cleaning and solving optical motion capture data. Given noisy marker data, we propose a new heterogeneous graph neural network which treats markers and joints as different types of nodes, and uses graph convolution operations to extract the local features of markers and joints and transform them to clean motions. To deal with anomaly markers (e.g. occluded or with big tracking errors), the key insight is that a marker's motion shows strong correlations with the motions of its immediate neighboring markers but less so with other markers, a.k.a. locality, which enables us to efficiently fill missing markers (e.g. due to occlusion). Additionally, we also identify marker outliers due to tracking errors by investigating their acceleration profiles. Finally, we propose a training regime based on representation learning and data augmentation, by training the model on data with masking. The masking schemes aim to mimic the occluded and noisy markers often observed in the real data. Finally, we show that our method achieves high accuracy on multiple metrics across various datasets. Extensive comparison shows our method outperforms state-of-the-art methods in terms of prediction accuracy of occluded marker position error by approximately 20%, which leads to a further error reduction on the reconstructed joint rotations and positions by 30%. The code and data for this paper are available at https://github.com/non-void/LocalMoCap.Comment: Siggraph Asia 2023 Conference Pape

    Effect of acetone extract of Rumex japonicas Houtt on hydrogen peroxide-induced apoptosis in rat myocardial cells

    Get PDF
    Purpose: To investigate the protective effect of the acetone extract of Rumex japonicas Houtt. (AER) on rat myocardial cells.Methods: R. japonicas was extracted with 75 % aqueous ethanol by reflux to afford total extract (TER). TER was suspended in water and then extracted with acetone to afford acetone fraction of R. japonicas (AER). High performance liquid chromatography (HPLC) combined with standard substances was carried out to analyze the major constituents of AER. Apoptosis in myocardial H9c2 cell line was induced by H2O2 (100 μmol/L). The cells were treated with AER (50, 100 and 200 μg/mL, and cell viability was evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, while oxidative stress level in H9c2 cells was evaluated by determining levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), creatinine kinase (CK), superoxide dismutase (SOD), and catalase (CAT). Furthermore, apoptotic proteins (caspase-3, Bax and Bcl-2) in H9c2 cells were analyzed by using western blot assay.Results: Results revealed that the main components of AER are aloe-emodin, rhein, emodin, chrysophanol and physcion. AER (50, 100 and 200 μg/mL) inhibited the cell viability reduction of the H9c2 cells induced by H2O2 (p < 0.05, p < 0.01, p < 0.01, respectively). AER (50, 100 and 200 μg/mL) decreased LDH and CK contents of H9c2 cells (p < 0.01). The levels of SOD (p<0.01) and CAT (p < 0.01) were increased by AER treatments (100 and 200 μg/mL); in addition, AER (50, 100 and 200 μg/mL) decreased MDA levels (p < 0.01). Besides, the present results also revealed that AER could down-regulate caspase-3 and Bax, but up-regulated Bcl-2.Conclusion: AER alleviates apoptosis induced by H2O2 in myocardial H9c2 cells via inhibition of oxidative stress and mitochondria-mediated apoptosis. This finding suggests that AER can potentially be developed for the treatment of myocardial apoptosis.Keywords: Rumex japonicas Houtt., Myocardial cells, Apoptosis, H9c2 cell, Oxidative stres

    Single-cell RNA sequencing of murine hearts for studying the development of the cardiac conduction system

    Get PDF
    The development of the cardiac conduction system (CCS) is essential for correct heart function. However, critical details on the cell types populating the CCS in the mammalian heart during the development remain to be resolved. Using single-cell RNA sequencing, we generated a large dataset of transcriptomes of ~0.5 million individual cells isolated from murine hearts at six successive developmental corresponding to the early, middle and late stages of heart development. The dataset provides a powerful library for studying the development of the heart's CCS and other cardiac components. Our initial analysis identified distinct cell types between 20 to 26 cell types across different stages, of which ten are involved in forming the CCS. Our dataset allows researchers to reuse the datasets for data mining and a wide range of analyses. Collectively, our data add valuable transcriptomic resources for further study of cardiac development, such as gene expression, transcriptional regulation and functional gene activity in developing hearts, particularly the CCS

    Associated Factors of Patients’ Survival in Out of Hospital Cardiac Arrest; a Cross-sectional Study

    Get PDF
    Introduction: Chinese populations have an increasingly high prevalence of cardiac arrest. This study aimed to investigate the prehospital associated factors of survival to hospital admission and discharge among out-of-hospital cardiac arrest (OHCA) adult cases in Macao Special Administrative Region (SAR), China. Methods: Baseline characteristics as well as prehospital factors of OHCA patients were collected from publicly accessible medical records and Macao Fire Services Bureau, China. Demographic and other prehospital OHCA characteristics of patients who survived to hospital admission and discharge were analyzed using multivariate logistic regression analysis. Results: A total of 904 cases with a mean age of 74.2±17.3 (range: 18-106) years were included (78%>65 years, 62% male). Initial shockable cardiac rhythm was the strongest predictor for survival to both hospital admission (OR=3.57, 95% CI: 2.26-5.63; p<0.001) and discharge (OR=12.40, 95% CI: 5.70-26.96; p<0.001). Being male (OR=1.63, 95% CI:1.08-2.46; p =0.021) and the lower emergency medical service (EMS) response time (OR=1.62, 95% CI: 1.12-2.34; p =0.010) were also associated with a 2-fold association with survival to hospital admission. In addition, access to prehospital defibrillation (OR=4.25, 95% CI: 1.78-10.12; p <0.001) had a 4-fold association with survival to hospital discharge. None of these associations substantively increased with age.  Conclusion: The major OHCA predictors of survival were initial shockable cardiac rhythm, being male, lower EMS response time, and access to prehospital defibrillation. These findings indicate a need for increased public awareness and more education

    Dbh+ catecholaminergic cardiomyocytes contribute to the structure and function of the cardiac conduction system in murine heart

    Get PDF
    The heterogeneity of functional cardiomyocytes arises during heart development, which is essential to the complex and highly coordinated cardiac physiological function. Yet the biological and physiological identities and the origin of the specialized cardiomyocyte populations have not been fully comprehended. Here we report a previously unrecognised population of cardiomyocytes expressing Dbhgene encoding dopamine beta-hydroxylase in murine heart. We determined how these myocytes are distributed across the heart by utilising advanced single-cell and spatial transcriptomic analyses, genetic fate mapping and molecular imaging with computational reconstruction. We demonstrated that they form the key functional components of the cardiac conduction system by using optogenetic electrophysiology and conditional cardiomyocyte Dbh gene deletion models. We revealed their close relationship with sympathetic innervation during cardiac conduction system formation. Our study thus provides new insights into the development and heterogeneity of the mammalian cardiac conduction system by revealing a new cardiomyocyte population with potential catecholaminergic endocrine function

    A protocol for dual calcium-voltage optical mapping in murine sinoatrial preparation with optogenetic pacing

    Get PDF
    Among the animal models for studying the molecular basis of atrial and sinoatrial node (SAN) biology and disease, the mouse is a widely used species due to its feasibility for genetic modifications in genes encoding ion channels or calcium handling and signaling proteins in the heart. It is therefore highly valuable to develop robust methodologies for studying SAN and atrial electrophysiological function in this species. Here, we describe a protocol for performing dual calcium-voltage optical mapping on mouse sinoatrial preparation (SAP), in combination with an optogenetic approach, for studying SAP membrane potential, intracellular Ca2+ transients, and pacemaker activity. The protocol includes the details for preparing the intact SAP, robust tissue dual-dye loading, light-programmed pacing, and high-resolution optical mapping. Our protocol provides an example of use of the combination of optogenetic and optical mapping techniques for investigating SAP membrane potential and intracellular Ca2+ transients and pacemaker activity with high temporal and spatial resolution in specific cardiac tissues. Thus, our protocol provides a useful tool for studying SAP physiology and pathophysiology in mice
    corecore