472 research outputs found

    A double-dot quantum ratchet driven by an independently biased quantum point contact

    Full text link
    We study a double quantum dot (DQD) coupled to a strongly biased quantum point contact (QPC), each embedded in independent electric circuits. For weak interdot tunnelling we observe a finite current flowing through the unbiased Coulomb blockaded DQD in response to a strong bias on the QPC. The direction of the current through the DQD is determined by the relative detuning of the energy levels of the two quantum dots. The results are interpreted in terms of a quantum ratchet phenomenon in a DQD energized by a nearby QPC.Comment: revised versio

    Drift mobility of long-living excitons in coupled GaAs quantum wells

    Full text link
    We observe high-mobility transport of indirect excitons in coupled GaAs quantum wells. A voltage-tunable in-plane potential gradient is defined for excitons by exploiting the quantum confined Stark effect in combination with a lithographically designed resistive top gate. Excitonic photoluminescence resolved in space, energy, and time provides insight into the in-plane drift dynamics. Across several hundreds of microns an excitonic mobility of >10^5 cm2/eVs is observed for temperatures below 10 K. With increasing temperature the excitonic mobility decreases due to exciton-phonon scattering.Comment: 3 pages, 3 figure

    Spectroscopy of nanoscopic semiconductor rings

    Get PDF
    Making use of self-assembly techniques, we demonstrate the realization of nanoscopic semiconductor quantum rings in which the electronic states are in the true quantum limit. We employ two complementary spectroscopic techniques to investigate both the ground states and the excitations of these rings. Applying a magnetic field perpendicular to the plane of the rings, we find that when approximately one flux quantum threads the interior of each ring, a change in the ground state from angular momentum =0\ell = 0 to =1\ell = -1 takes place. This ground state transition is revealed both by a drastic modification of the excitation spectrum and by a change in the magnetic field dispersion of the single-electron charging energy

    Coherent control of a nanomechanical two-level system

    Full text link
    The Bloch sphere is a generic picture describing a coupled two-level system and the coherent dynamics of its superposition states under control of electromagnetic fields. It is commonly employed to visualise a broad variety of phenomena ranging from spin ensembles and atoms to quantum dots and superconducting circuits. The underlying Bloch equations describe the state evolution of the two-level system and allow characterising both energy and phase relaxation processes in a simple yet powerful manner. Here we demonstrate the realisation of a nanomechanical two-level system which is driven by radio frequency signals. It allows to extend the above Bloch sphere formalism to nanoelectromechanical systems. Our realisation is based on the two orthogonal fundamental flexural modes of a high quality factor nanostring resonator which are strongly coupled by a dielectric gradient field. Full Bloch sphere control is demonstrated via Rabi, Ramsey and Hahn echo experiments. This allows manipulating the classical superposition state of the coupled modes in amplitude and phase and enables deep insight into the decoherence mechanisms of nanomechanical systems. We have determined the energy relaxation time T1 and phase relaxation times T2 and T2*, and find them all to be equal. This not only indicates that energy relaxation is the dominating source of decoherence, but also demonstrates that reversible dephasing processes are negligible in such collective mechanical modes. We thus conclude that not only T1 but also T2 can be increased by engineering larger mechanical quality factors. After a series of ground-breaking experiments on ground state cooling and non-classical signatures of nanomechanical resonators in recent years, this is of particular interest in the context of quantum information processing

    Signatures of two-level defects in the temperature-dependent damping of nanomechanical silicon nitride resonators

    Full text link
    The damping rates of high quality factor nanomechanical resonators are well beyond intrinsic limits. Here, we explore the underlying microscopic loss mechanisms by investigating the temperature-dependent damping of the fundamental and third harmonic transverse flexural mode of a doubly clamped silicon nitride string. It exhibits characteristic maxima reminiscent of two-level defects typical for amorphous materials. Coupling to those defects relaxes the momentum selection rules, allowing energy transfer from discrete long wavelength resonator modes to the high frequency phonon environment

    Josephson Junctions defined by a Nano-Plough

    Full text link
    We define superconducting constrictions by ploughing a deposited Aluminum film with a scanning probe microscope. The microscope tip is modified by electron beam deposition to form a nano-plough of diamond-like hardness, what allows the definition of highly transparent Josephson junctions. Additionally a dc-SQUID is fabricated to verify appropriate functioning of the junctions. The devices are easily integrated in mesoscopic devices as local radiation sources and can be used as tunable on-chip millimeter wave sources
    corecore