472 research outputs found
A double-dot quantum ratchet driven by an independently biased quantum point contact
We study a double quantum dot (DQD) coupled to a strongly biased quantum
point contact (QPC), each embedded in independent electric circuits. For weak
interdot tunnelling we observe a finite current flowing through the unbiased
Coulomb blockaded DQD in response to a strong bias on the QPC. The direction of
the current through the DQD is determined by the relative detuning of the
energy levels of the two quantum dots. The results are interpreted in terms of
a quantum ratchet phenomenon in a DQD energized by a nearby QPC.Comment: revised versio
Drift mobility of long-living excitons in coupled GaAs quantum wells
We observe high-mobility transport of indirect excitons in coupled GaAs
quantum wells. A voltage-tunable in-plane potential gradient is defined for
excitons by exploiting the quantum confined Stark effect in combination with a
lithographically designed resistive top gate. Excitonic photoluminescence
resolved in space, energy, and time provides insight into the in-plane drift
dynamics. Across several hundreds of microns an excitonic mobility of >10^5
cm2/eVs is observed for temperatures below 10 K. With increasing temperature
the excitonic mobility decreases due to exciton-phonon scattering.Comment: 3 pages, 3 figure
Spectroscopy of nanoscopic semiconductor rings
Making use of self-assembly techniques, we demonstrate the realization of
nanoscopic semiconductor quantum rings in which the electronic states are in
the true quantum limit. We employ two complementary spectroscopic techniques to
investigate both the ground states and the excitations of these rings. Applying
a magnetic field perpendicular to the plane of the rings, we find that when
approximately one flux quantum threads the interior of each ring, a change in
the ground state from angular momentum to takes place.
This ground state transition is revealed both by a drastic modification of the
excitation spectrum and by a change in the magnetic field dispersion of the
single-electron charging energy
Coherent control of a nanomechanical two-level system
The Bloch sphere is a generic picture describing a coupled two-level system
and the coherent dynamics of its superposition states under control of
electromagnetic fields. It is commonly employed to visualise a broad variety of
phenomena ranging from spin ensembles and atoms to quantum dots and
superconducting circuits. The underlying Bloch equations describe the state
evolution of the two-level system and allow characterising both energy and
phase relaxation processes in a simple yet powerful manner.
Here we demonstrate the realisation of a nanomechanical two-level system
which is driven by radio frequency signals. It allows to extend the above Bloch
sphere formalism to nanoelectromechanical systems. Our realisation is based on
the two orthogonal fundamental flexural modes of a high quality factor
nanostring resonator which are strongly coupled by a dielectric gradient field.
Full Bloch sphere control is demonstrated via Rabi, Ramsey and Hahn echo
experiments. This allows manipulating the classical superposition state of the
coupled modes in amplitude and phase and enables deep insight into the
decoherence mechanisms of nanomechanical systems. We have determined the energy
relaxation time T1 and phase relaxation times T2 and T2*, and find them all to
be equal. This not only indicates that energy relaxation is the dominating
source of decoherence, but also demonstrates that reversible dephasing
processes are negligible in such collective mechanical modes. We thus conclude
that not only T1 but also T2 can be increased by engineering larger mechanical
quality factors. After a series of ground-breaking experiments on ground state
cooling and non-classical signatures of nanomechanical resonators in recent
years, this is of particular interest in the context of quantum information
processing
Signatures of two-level defects in the temperature-dependent damping of nanomechanical silicon nitride resonators
The damping rates of high quality factor nanomechanical resonators are well
beyond intrinsic limits. Here, we explore the underlying microscopic loss
mechanisms by investigating the temperature-dependent damping of the
fundamental and third harmonic transverse flexural mode of a doubly clamped
silicon nitride string. It exhibits characteristic maxima reminiscent of
two-level defects typical for amorphous materials. Coupling to those defects
relaxes the momentum selection rules, allowing energy transfer from discrete
long wavelength resonator modes to the high frequency phonon environment
Josephson Junctions defined by a Nano-Plough
We define superconducting constrictions by ploughing a deposited Aluminum
film with a scanning probe microscope. The microscope tip is modified by
electron beam deposition to form a nano-plough of diamond-like hardness, what
allows the definition of highly transparent Josephson junctions. Additionally a
dc-SQUID is fabricated to verify appropriate functioning of the junctions. The
devices are easily integrated in mesoscopic devices as local radiation sources
and can be used as tunable on-chip millimeter wave sources
- …