28 research outputs found

    Towards a Rational Design of Zeolite-Polymer Composite Nanofibers for Efficient Adsorption of Creatinine

    Get PDF
    This report describes the compositional and structural design strategy of a zeolite-polymer composite nanofiber mesh for the efficient removal of uremic toxins towards blood purification application. The nanofiber is fabricated by electrospinning composite solution of biocompatible poly(ethylene-co-vinyl alcohol) (EVOH) and zeolite particles which are capable of selectively adsorbing uremic toxins such as creatinine. By controlling electrospinning conditions carefully, the incorporated zeolites in EVOH were found to correspond closely to the feed ratios. Elemental mapping images of Si show that zeolites were uniformly blended within the fibers. The fabricated composite fibers successfully adsorbed creatinine from solution and the adsorption capacity reached a maximum at 12 h. The crystallinity of the nanofiber was also controlled by varying the composition of ethylene content in EVOH. Less crystallinity resulted in higher creatinine adsorption capacity due to the barrier property of EVOH. Cytotoxicity assay demonstrated that the composite fibers showed less toxicity than free zeolite particles which killed more than 95% of cells. The proposed composite fibers, therefore, have the potential to be utilized as a new approach to removing creatinine selectively from the bloodstream

    Chemical profile and in vivo toxicity evaluation of unripe Citrus aurantifolia essential oil

    Get PDF
    Citrus aurantifolia (Christm.) Swingle (syn. C. MEDICA var. ACIDA Brandis) (family: Rutaceae) essential oil is one of the cheapest oils found in local markets. Although, it is generally accepted as non-toxic to vital organs and cells, majority of people are cynical about it usage. Herein, the present study reports the chemical composition and in vivo oral toxicity study of unripe C. aurantifolia essential oil found in Ghana. The toxicity of C. aurantifolia essential oil extract was investigated via oral administration using two methods: The acute toxicity single dose study (SDS) and the repeated dose method. The oil exhibited no acute toxicity but in the sub-chronic studies, the effects was dose and time-dependent. Chemical profile investigation of the oil showed 9 constituent of phytochemicals (Germacrene isomers (61.2%), Pineen (14%), Linalool dimmer (2.9%), Bornane (11%), Citral (2.9%), Anethole (1.5%), Anisole (1.1%), Safrole (0.3%) and Demitol (0.6%)). Histopathological studies revealed conditions such as necrosis, edema and inflammatory reaction in the liver, spleen and kidneys. Marginal upsurge of biochemical parameters above normal and elevated levels of lymphocytes (35.20–46.40 g/dL) demonstrated mild toxicity among the 100 mg/kg and 500 mg/kg dose groups at the sub-chronic stage. Low levels of hemoglobin (13.60 to 12.70 g/dL), MCV (34.20–24.0 fL), MCH (40.20–36.40 g/dL) along with high levels of liver enzymes confirmed the mild toxicity of the oil at sub-chronic stage. These results demonstrate that, despite consideration of lime essential oil as safe, it can have mild hematotoxic, nephrotoxic and hepatotoxic effects

    Facile Functionalization of Electrospun Poly(ethylene-co-vinyl alcohol) Nanofibers via the Benzoxaborole-Diol Interaction

    No full text
    A facile functionalization method of poly(ethylene-co-vinyl alcohol) (EVOH) nanofiber meshes was demonstrated by utilizing the benzoxaborole-diol interaction between EVOH and benzoxaborole-based copolymers (BOP). EVOH and BOP were firstly mixed to prepare the quasi-gel-state solution with enough viscosity for electro-spinning. The fiber morphology was controlled via changing the mixing ratio of EVOH and BOP. The prepared EVOH/BOP nanofiber mesh showed good stability in aqueous solution. Over 97% of the nanofibers remained after the immersion test for 24 h in acid or alkali aqueous solutions without changing their morphology. Temperature and pH-responsive moieties were copolymerized with BOP, and cationic dye was easily immobilized into the nanofiber mesh via an electrostatic interaction. Therefore, the proposed functionalization technique is possible to perform on multi-functionalized molecule-incorporated nanofibers that enable the fibers to show the environmental stimuli-responsive property for the further applications of the EVOH materials

    Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications

    No full text
    The development of stimuli responsive polymers has progressed significantly with novel preparation techniques, which has allowed access to new materials with unique properties. Dual thermoresponsive (double temperature responsive) block copolymers are particularly of interest as their properties can change depending on the lower critical solution temperature (LCST) or upper critical solution temperature (UCST) of each segment. For instance, these block copolymers can change from being hydrophilic, to amphiphilic or to hydrophobic simply by changing the solution temperature without any additional chemicals and the block copolymers can change from being fully solubilized to self-assembled structures to macroscopic aggregation/precipitation. Based on the unique solution properties, these dual thermo-responsive block copolymers are expected to be suitable for biomedical applications. This review is divided into three parts; LCST-LCST types of block copolymers, UCST-LCST types of block copolymers, and their potential as biomedical applications

    Study of bacterial adhesion on biomimetic temperature responsive glycopolymer surfaces

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen responsible for diseases such as bacteremia, chronic lung infection, and acute ulcerative keratitis. P. aeruginosa induced diseases can be fatal as the exotoxins and endotoxins released by the bacterium continue to damage host tissues even after the administration of antibiotics. As bacterial adhesion on cell surfaces is the first step in bacterial based pathogen infections, the control of bacteria-cell interactions is a worthwhile research target. In this work, thermally responsive poly(N-isopropylacrylamide) [P(NIPAAm)] based biomimetic surfaces were developed to study the two major bacterial infection mechanisms, which is believed to be mediated by hydrophobic or lectin-carbohydrate interactions, using quartz crystal microbalance with dissipation. Although, a greater number of P. aeruginosa adhered to the NIPAAm homopolymer modified surfaces at temperatures higher than the lower critical solution temperature (LCST), the bacterium-substratum bond stiffness was stronger between P. aeruginosa and a galactose based P(NIPAAm) surface. The high bacterial adhesion bond stiffness observed on the galactose based thermally responsive surface at 37 °C might suggest that both hydrophobic and lectin-carbohydrate interactions contribute to bacterial adhesion on cell surfaces. Our investigation also suggests that the lectin-carbohydrate interaction play a significant role in bacterial infections.</p

    Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications

    No full text
    The development of stimuli responsive polymers has progressed significantly with novel preparation techniques, which has allowed access to new materials with unique properties. Dual thermoresponsive (double temperature responsive) block copolymers are particularly of interest as their properties can change depending on the lower critical solution temperature (LCST) or upper critical solution temperature (UCST) of each segment. For instance, these block copolymers can change from being hydrophilic, to amphiphilic or to hydrophobic simply by changing the solution temperature without any additional chemicals and the block copolymers can change from being fully solubilized to self-assembled structures to macroscopic aggregation/precipitation. Based on the unique solution properties, these dual thermo-responsive block copolymers are expected to be suitable for biomedical applications. This review is divided into three parts; LCST-LCST types of block copolymers, UCST-LCST types of block copolymers, and their potential as biomedical applications

    Temperature-responsive hyperbranched amine-based polymers for solid-liquid separation

    No full text
    Temperature-responsive hyperbranched polymers containing primary amines as pendent groups have been synthesized for solid-liquid separation of kaolinite clay suspension. The effects of temperature, polymer charge density, and polymer architecture on particle flocculation have been investigated. Suspensions treated with the temperature-responsive amine-based hyperbranched polymers showed remarkable separation of the fine particles at a low polymer dosage of 10 ppm and at testing temperatures of 40 °C. In comparison to other polymers studied (linear and hyperbranched homopolymers and copolymers), the temperature-responsive amine-based hyperbranched copolymers showed better particle flocculation at 40 °C, as evidenced by the formation of a thinner sediment bed without compromising the amount of clay particles being flocculated. This superior solid-liquid separation performance can be explained by the hydrophobic interaction of PNIPAM segments on particle surfaces or the capture of additional free particles or small floc due to the exposure of buried positive charges (because of the phase separation of the hydrophilic amines and hydrophobic PNIPAM part) at temperatures above the lower critical solution temperature (LCST).</p

    Development and Characterisation of the Imiquimod Poly(2-(2-methoxyethoxy)ethyl Methacrylate) Hydrogel Dressing for Keloid Therapy

    No full text
    The imiquimod-poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogel (poly(MEO2MA) hydrogel) dressing was developed for the keloid therapy application. Four groups of the hydrogels, including the imiquimod-poly(MEO2MA) hydrogel, crosslinked with 0.2 mol %, 0.4 mol %, 0.6 mol %, and 0.8 mol % of di(ethylene glycol) dimethacrylate cross-linker (DEGDMA), were synthesised and characterised for fabricating the imiquimod-poly(MEO2MA) hydrogel pad. The lower critical solution temperature (LCST) of the poly(MEO2MA) hydrogel was measured at approximately 28 °C and was used as a trigger to control the imiquimod loading and release. The loaded amounts of the imiquimod in the poly(MEO2MA) hydrogel, crosslinked with 0.2 mol % and 0.8 mol % of DEGDMA, were about 27.4 μg and 14.1 μg per 1 mm3 of the hydrogel, respectively. The imiquimod-release profiles of two samples were characterised in a phosphate buffered saline (PBS) solution at 37 °C and the released imiquimod amount were about 45% and 46% of the total loaded imiquimod. The Cell Counting Kit-8 (CCK-8) assay was utilised to analyse the cell viability of keloid fibroblasts cultured on the samples of imiquimod-poly(MEO2MA) hydrogel, crosslinked with 0.2 mol % and 0.8 mol % of DEGDMA. There was around a 34% decrease of the cell viabilities after 2 days, compared with the pure-poly(MEO2MA) hydrogel samples. Therefore, the developed imiquimod-poly(MEO2MA) hydrogel dressing can affect the proliferation of keloid fibroblasts. It should be possible to utilise the hydrogel dressing for the keloid therapy application
    corecore