3 research outputs found

    Effects of depressive symptoms and peripheral DAT methylation on neural reactivity to alcohol cues in alcoholism

    Get PDF
    In alcohol-dependent (AD) patients, alcohol cues induce strong activations in brain areas associated with alcohol craving and relapse, such as the nucleus accumbens (NAc) and amygdala. However, little is known about the influence of depressive symptoms, which are common in AD patients, on the brain’s reactivity to alcohol cues. The methylation state of the dopamine transporter gene (DAT) has been associated with alcohol dependence, craving and depression, but its influence on neural alcohol cue reactivity has not been tested. Here, we compared brain reactivity to alcohol cues in 38 AD patients and 17 healthy controls (HCs) using functional magnetic resonance imaging and assessed the influence of depressive symptoms and peripheral DAT methylation in these responses. We show that alcoholics with low Beck’s Depression Inventory scores (n=29) had higher cue-induced reactivity in NAc and amygdala than those with mild/moderate depression scores (n=9), though subjective perception of craving was higher in those with mild/moderate depression scores. We corroborated a higher DAT methylation in AD patients than HCs, and showed higher DAT methylation in AD patients with mild/moderate than low depression scores. Within the AD cohort, higher methylation predicted craving and, at trend level (P=0.095), relapse 1 year after abstinence. Finally, we show that amygdala cue reactivity correlated with craving and DAT methylation only in AD patients with low depression scores. These findings suggest that depressive symptoms and DAT methylation are associated with alcohol craving and associated brain processes in alcohol dependence, which may have important consequences for treatment. Moreover, peripheral DAT methylation may be a clinically relevant biomarker in AD patients

    A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis

    Get PDF
    In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis
    corecore