284 research outputs found

    Facial expression recognition using shape and texture information

    Get PDF
    A novel method based on shape and texture information is proposed in this paper for facial expression recognition from video sequences. The Discriminant Non-negative Matrix Factorization (DNMF) algorithm is applied at the image corresponding to the greatest intensity of the facial expression (last frame of the video sequence), extracting that way the texture information. A Support Vector Machines (SVMs) system is used for the classi cation of the shape information derived from tracking the Candide grid over the video sequence. The shape information consists of the di erences of the node coordinates between the rst (neutral) and last (fully expressed facial expression) video frame. Subsequently, fusion of texture and shape information obtained is performed using Radial Basis Function (RBF) Neural Networks (NNs). The accuracy achieved is equal to 98,2% when recognizing the six basic facial expressionsIFIP International Conference on Artificial Intelligence in Theory and Practice - Machine VisionRed de Universidades con Carreras en Informática (RedUNCI

    Dynamic probabilistic linear discriminant analysis for video classification

    Get PDF
    Component Analysis (CA) comprises of statistical techniques that decompose signals into appropriate latent components, relevant to a task-at-hand (e.g., clustering, segmentation, classification). Recently, an explosion of research in CA has been witnessed, with several novel probabilistic models proposed (e.g., Probabilistic Principal CA, Probabilistic Linear Discriminant Analysis (PLDA), Probabilistic Canonical Correlation Analysis). PLDA is a popular generative probabilistic CA method, that incorporates knowledge regarding class-labels and furthermore introduces class-specific and sample-specific latent spaces. While PLDA has been shown to outperform several state-of-the-art methods, it is nevertheless a static model; any feature-level temporal dependencies that arise in the data are ignored. As has been repeatedly shown, appropriate modelling of temporal dynamics is crucial for the analysis of temporal data (e.g., videos). In this light, we propose the first, to the best of our knowledge, probabilistic LDA formulation that models dynamics, the so-called Dynamic-PLDA (DPLDA). DPLDA is a generative model suitable for video classification and is able to jointly model the label information (e.g., face identity, consistent over videos of the same subject), as well as dynamic variations of each individual video. Experiments on video classification tasks such as face and facial expression recognition show the efficacy of the proposed metho

    GANFIT: Generative adversarial network fitting for high fidelity 3D face reconstruction

    Get PDF
    In the past few years, a lot of work has been done to- wards reconstructing the 3D facial structure from single images by capitalizing on the power of Deep Convolutional Neural Networks (DCNNs). In the most recent works, differentiable renderers were employed in order to learn the relationship between the facial identity features and the parameters of a 3D morphable model for shape and texture. The texture features either correspond to components of a linear texture space or are learned by auto-encoders directly from in-the-wild images. In all cases, the quality of the facial texture reconstruction of the state-of-the-art methods is still not capable of modeling textures in high fidelity. In this paper, we take a radically different approach and harness the power of Generative Adversarial Networks (GANs) and DCNNs in order to reconstruct the facial texture and shape from single images. That is, we utilize GANs to train a very powerful generator of facial texture in UV space. Then, we revisit the original 3D Morphable Models (3DMMs) fitting approaches making use of non-linear optimization to find the optimal latent parameters that best reconstruct the test image but under a new perspective. We optimize the parameters with the supervision of pretrained deep identity features through our end-to-end differentiable framework. We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, to the best of our knowledge, facial texture reconstruction with high-frequency details

    Dense 3D face decoding over 2500FPS: Joint texture and shape convolutional mesh decoders

    Get PDF
    3D Morphable Models (3DMMs) are statistical models that represent facial texture and shape variations using a set of linear bases and more particular Principal Component Analysis (PCA). 3DMMs were used as statistical priors for reconstructing 3D faces from images by solving non-linear least square optimization problems. Recently, 3DMMs were used as generative models for training non-linear mappings (i.e., regressors) from image to the parameters of the models via Deep Convolutional Neural Networks (DCNNs). Nev- ertheless, all of the above methods use either fully con- nected layers or 2D convolutions on parametric unwrapped UV spaces leading to large networks with many parame- ters. In this paper, we present the first, to the best of our knowledge, non-linear 3DMMs by learning joint texture and shape auto-encoders using direct mesh convolutions. We demonstrate how these auto-encoders can be used to train very light-weight models that perform Coloured Mesh Decoding (CMD) in-the-wild at a speed of over 2500 FPS

    The Hybrid Approach to Intervention of Chronic Total Occlusions

    Get PDF
    The "hybrid" approach to chronic total occlusion (CTO) percutaneous coronary intervention (PCI) was developed to provide guidance on optimal crossing strategy selection. Dual angiography remains the cornerstone of clinical decision making in CTO PCI. Four angiographic parameters are assessed: (a) morphology of the proximal cap (clear-cut or ambiguous); (b) occlusion length; (c) distal vessel size and presence of bifurcations beyond the distal cap; and (d) location and suitability of location and suitability of a retrograde conduit (collateral channels or bypass grafts) for retrograde access. Antegrade wire escalation is favored for short (<20 mm) occlusions, usually escalating rapidly from a soft tapered-tip polymer-jacketed guidewire to a stiff polymer-jacketed or tapered-tip guidewire. Antegrade dissection/re-entry is favored in long (≥20 mm long) occlusions, trying to minimize the dissection length by re-entering into the distal true lumen immediately after the occlusion. Primary retrograde approach is preferred for lesions with an ambiguous proximal cap, poor distal target, good interventional collaterals, and heavy calcification,as well as chronic kidney disease. The "hybrid" approach advocates early change between strategies to enable CTO crossing in the most efficacious, efficient, and safe way. Several early studies are demonstrating high success and low complication rates with use of the "hybrid" approach, supporting its expanding use in CTO PCI

    4DFAB: a large scale 4D facial expression database for biometric applications

    Get PDF
    The progress we are currently witnessing in many computer vision applications, including automatic face analysis, would not be made possible without tremendous efforts in collecting and annotating large scale visual databases. To this end, we propose 4DFAB, a new large scale database of dynamic high-resolution 3D faces (over 1,800,000 3D meshes). 4DFAB contains recordings of 180 subjects captured in four different sessions spanning over a five-year period. It contains 4D videos of subjects displaying both spontaneous and posed facial behaviours. The database can be used for both face and facial expression recognition, as well as behavioural biometrics. It can also be used to learn very powerful blendshapes for parametrising facial behaviour. In this paper, we conduct several experiments and demonstrate the usefulness of the database for various applications. The database will be made publicly available for research purposes
    • …
    corecore