35 research outputs found

    Effect of Inhomogeneity in Translocation of Polymers through Nanopores

    Full text link
    The motion of polymers with inhomogeneous structure through nanopores is discussed theoretically. Specifically, we consider the translocation dynamics of polymers consisting of double-stranded and single-stranded blocks. Since only the single-stranded chain can go through the nanopore the double-stranded segment has to unzip before the translocation. Utilizing a simple analytical model, translocation times are calculated explicitly for different polymer orientations, i.e., when the single-stranded block enters the pore first and when the double-stranded segment is a leading one. The dependence of the translocation dynamics on external fields, energy of interaction in the double-stranded segment, size of the polymer and the fraction of double-stranded monomers is analyzed. It is found that the order of entrance into the pore has a significant effect on the translocation dynamics. The theoretical results are discussed using free-energy landscape arguments.Comment: 12 pages, 5 figures, submitted to J. Chem. Phy

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Clebsch-Gordan coefficients of finite magnetic groups

    Get PDF
    A detailed method is given for the calculation of Clebsch–Gordan coefficients of finite magnetic groups. This method is a generalization of a new method for the calculation of Clebsch–Gordan coefficients of finite nonmagnetic groups which makes use of the fact that the Clebsch–Gordan coefficients may be arranged into vectors which are eigenvectors of certain projection matrices
    corecore