48 research outputs found

    Identification of QTLs and candidate genes for high grain Fe and Zn concentration in sorghum [Sorghum bicolor (L.)Moench]

    Get PDF
    Sorghum is a major food crop in the semi-arid tropics of Africa and Asia. Enhancing the grain iron (Fe) and zinc (Zn) concentration in sorghum using genetic approaches would help alleviate micronutrient malnutrition in millions of poor people consuming sorghum as a staple food. To localize genomic regions associated with grain Fe and Zn, a sorghum F6 recombinant inbred line (RIL) population (342 lines derived from cross 296B PVK 801) was phenotyped in six environments, and genotyped with simple sequence repeat (SSR), DArT (Diversity Array Technology) and DArTSeq (Diversity Array Technology) markers. Highly significant genotype environment interactions were observed for both micronutrients. Grain Fe showed greater variation than Zn. A sorghum genetic map was constructed with 2088 markers (1148 DArTs, 927 DArTSeqs and 13 SSRs) covering 1355.52 cM with an average marker interval of 0.6 cM. Eleven QTLs (individual) and 3 QTLs (across) environments for Fe and Zn were identified. We identified putative candidate genes from the QTL interval of qfe7.1, qzn7.1, and qzn7.2 (across environments) located on SBI-07 involved in Fe and Zn metabolism. These were CYP71B34, and ZFP 8 (ZINC FINGER PROTEIN 8). After validation, the linked markers identified in this study can help in developing high grain Fe and Zn sorghum cultivars in sorghum improvement programs globally

    IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes

    Get PDF
    Recent studies suggest a powerful prognostic value for plasma cytokine levels in primary myelofibrosis (interleukin (IL)-2R, IL-8, IL-12, IL-15 and C–X–C motif chemokine 10 (CXCL10)) and large-cell lymphoma (IL-2R, IL-8, IL-10, IL-12, CXCL9 and CXCL10). To examine the possibility of a similar phenomenon in myelodysplastic syndromes (MDS), we used multiplex enzyme-linked immunosorbent assay to measure 30 plasma cytokines in 78 patients with primary MDS. Compared with normal controls (n=35), the levels of 19 cytokines were significantly altered. Multivariable analysis identified increased levels of CXCL10 (P<0.01), IL-7 (P=0.02) and IL-6 (P=0.07) as predictors of shortened survival; the survival association remained significant when the Cox model was adjusted for the International Prognostic Scoring System, age, transfusion-need or thrombocytopenia. MDS patients with normal plasma levels of CXCL10, IL-7 and IL-6 lived significantly longer (median survival 76 months) than those with elevated levels of at least one of the three cytokines (median survival 25 months) (P<0.01). Increased levels of IL-6 were associated with inferior leukemia-free survival, independent of other prognostic factors (P=0.01). Comparison of plasma cytokines between MDS (n=78) and primary myelofibrosis (n=127) revealed a significantly different pattern of abnormalities. These observations reinforce the concept of distinct and prognostically relevant plasma cytokine signatures in hematological malignancies

    Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench)

    Get PDF
    The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg−1 and Zinc = 10.2 to 58.7 mg kg−1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p 0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc

    Galectin-3C Inhibits Tumor Growth and Increases the Anticancer Activity of Bortezomib in a Murine Model of Human Multiple Myeloma

    Get PDF
    Galectin-3 is a human lectin involved in many cellular processes including differentiation, apoptosis, angiogenesis, neoplastic transformation, and metastasis. We evaluated galectin-3C, an N-terminally truncated form of galectin-3 that is thought to act as a dominant negative inhibitor, as a potential treatment for multiple myeloma (MM). Galectin-3 was expressed at varying levels by all 9 human MM cell lines tested. In vitro galectin-3C exhibited modest anti-proliferative effects on MM cells and inhibited chemotaxis and invasion of U266 MM cells induced by stromal cell-derived factor (SDF)-1α. Galectin-3C facilitated the anticancer activity of bortezomib, a proteasome inhibitor approved by the FDA for MM treatment. Galectin-3C and bortezomib also synergistically inhibited MM-induced angiogenesis activity in vitro. Delivery of galectin-3C intravenously via an osmotic pump in a subcutaneous U266 cell NOD/SCID mouse model of MM significantly inhibited tumor growth. The average tumor volume of bortezomib-treated animals was 19.6% and of galectin-3C treated animals was 13.5% of the average volume of the untreated controls at day 35. The maximal effect was obtained with the combination of galectin-3C with bortezomib that afforded a reduction of 94% in the mean tumor volume compared to the untreated controls at day 35. In conclusion, this is the first study to show that inhibition of galectin-3 is efficacious in a murine model of human MM. Our results demonstrated that galectin-3C alone was efficacious in a xenograft mouse model of human MM, and that it enhanced the anti-tumor activity of bortezomib in vitro and in vivo. These data provide the rationale for continued testing of galectin-3C towards initiation of clinical trials for treatment of MM

    Lenalidomide reduces microglial activation and behavioral deficits in a transgenic model of Parkinson’s disease

    Get PDF
    BACKGROUND: Parkinson’s disease (PD) is one of the most common causes of dementia and motor deficits in the elderly. PD is characterized by the abnormal accumulation of the synaptic protein alpha-synuclein (α-syn) and degeneration of dopaminergic neurons in substantia nigra, which leads to neurodegeneration and neuroinflammation. Currently, there are no disease modifying alternatives for PD; however, targeting neuroinflammation might be a viable option for reducing motor deficits and neurodegeneration. Lenalidomide is a thalidomide derivative designed for reduced toxicity and increased immunomodulatory properties. Lenalidomide has shown protective effects in an animal model of amyotrophic lateral sclerosis, and its mechanism of action involves modulation of cytokine production and inhibition of NF-κB signaling. METHODS: In order to assess the effect of lenalidomide in an animal model of PD, mThy1-α-syn transgenic mice were treated with lenalidomide or the parent molecule thalidomide at 100 mg/kg for 4 weeks. RESULTS: Lenalidomide reduced motor behavioral deficits and ameliorated dopaminergic fiber loss in the striatum. This protective action was accompanied by a reduction in microgliosis both in striatum and hippocampus. Central expression of pro-inflammatory cytokines was diminished in lenalidomide-treated transgenic animals, together with reduction in NF-κB activation. CONCLUSION: These results support the therapeutic potential of lenalidomide for reducing maladaptive neuroinflammation in PD and related neuropathologies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12974-015-0320-x) contains supplementary material, which is available to authorized users
    corecore