21 research outputs found

    Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and CdxZn1−xS nanoparticles with sizes of 6–8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube’s surface). The halloysite– QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite–QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for CdxZn1−xS QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite–QD systems allows for their promising usage as markers for biomedical applications

    Studies on Azotobacter chroococcum

    No full text

    Hydroconversion of Aromatic Hydrocarbons over Bimetallic Catalysts

    No full text
    Bimetallic catalysts (BMC) for hydroconversion of aromatic hydrocarbons (ArH) have been designed by modification of Ni/Al2O3 with chromium(0) compounds and phosphoromolybdic heteropolyacid (HPA). Catalysts were tested in hydrogenation of benzene and toluene, in hydrodemethylation of pure toluene and they were shown to possess a high activity, selectivity and sulfur tolerance under conditions of the processes above. The activity of BMC in these processes was much higher as compared with that of two-component (Ni-Cr, Ni-HPA) or conventional Ni/Al2O3 catalysts. Using BMC, hydrogenation of benzene and toluene proceeds with activity increased (up to 34–38 mol/kg·h) and toluene hydrodemethylation may be performed with improved selectivity (90.3%) and benzene yield (81%). The high sulfur tolerance of BMC was demonstrated by performing hydrodemethylation of toluene containing up to 500 ppm S

    Cellulose Nanofibrils and Tubular Halloysite as Enhanced Strength Gelation Agents

    No full text
    Silica gels are widely employed in water shutoff services, making them an essential tool in oil well management. Silica nanoparticles may serve as a strengthening additive for polymer hydrogels. In this study, we look at this statement from a different angle: What additives could be used to increase the strength of silica gels? Colloidal silica gels were prepared with various additives, and gel strength was measured by a Veiler–Rebinder apparatus. We found that cellulose nanofibrils considerably increase the gel strength (from 20–25 to 35–40 kPa), which is comparable with the industrial anionic polymer Praestol 2540. Cellulose nanofibrils can be produced from cheap industrial-grade cellulose with low-cost industrial chemicals and could be partially replaced by the even less expensive halloysite nanoclay. Cellulose nanofibrils produced from renewable sources and naturally occurring halloysite nanoclay could be used as complementary reinforcing agents

    Selective Hydrogenation of Acetylene over Pd-Mn/Al2O3 Catalysts

    No full text
    Novel bimetallic Pd-Mn/Al2O3 catalysts are designed by the decomposition of cyclopentadienylmanganese tricarbonyl (cymantrene) on reduced Pd/Al2O3 in an H2 atmosphere. The peculiarities of cymantrene decomposition on palladium and, thus, the formation of bimetallic Pd-Mn catalysts are studied. The catalysts are characterized by N2 adsorption, H2 pulse chemisorption, temperature-programmed desorption of hydrogen (TPD-H2), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The modified catalysts show the changed hydrogen chemisorption properties and the absence of weakly bonded hydrogen. Using an organomanganese precursor provides an uniform Mn distribution on the catalyst surface. Tested in hydrogenation of acetylene, the catalysts show both higher activity and selectivity to ethylene (20% higher) compared to the non-modified Pd/Al2O3 catalyst. The influence of the addition of Mn and temperature treatment on catalyst performance is studied. The optimal Mn content and treatment temperature are found. It is established that modification with Mn changes the route of acetylene hydrogenation from a consecutive scheme for Pd/Al2O3 to parallel one for the Pd-Mn samples. The reaction rate shows zero overall order by reagents for all tested catalysts

    The effect of methylfurans on the physicochemical and performance characteristics of finished motor gasoline

    No full text
    The physicochemical and performance characteristics of blends of commercial gasoline with the promising oxygenate antiknock additives 2-methylfuran and 2,5-dimethylfuran have been studied. The key parameters determining the compliance of gasoline with the GOST R 51866-2002 (EN 228-2004) requirements have been measured. A high antiknock activity of the test compounds has been demonstrated, and blending octane numbers have been calculated. It has also been found that the addition of 2-methylfuran and 2,5-dimethylfuran to gasoline substantially deteriorates its oxidation stability and increases gum content

    Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes

    No full text
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and CdxZn1−xS nanoparticles with sizes of 6–8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube’s surface). The halloysite– QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite–QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for CdxZn1−xS QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite–QD systems allows for their promising usage as markers for biomedical applications
    corecore