68 research outputs found

    Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method

    Get PDF
    Buffer material (compacted bentonite), one of the engineered barrier elements in the geological disposal of a high-level radioactive waste, develops swelling stress due to groundwater penetration from the surrounding rock mass. Montmorillonite is the major clay mineral component of bentonite. Even previous studies provide few mechanical and thermodynamic data on Ca-montmorillonite. In this study, thermodynamic data on Ca-montmorillonite were obtained as a function of water content by measuring relative humidity (RH) and temperature. The activities of water and the relative partial molar Gibbs free energies of water were determined from the experimental results, and the swelling stress of Ca-bentonite was calculated using the thermodynamic model and compared with measured data. The activities of water and the relative partial molar Gibbs free energies obtained in the experiments decreased with decreasing water content in water contents lower than about 25%. This trend was similar to that of Na-montmorillonite. The swelling stress calculated based on the thermodynamic model was approximately 200 MPa at a montmorillonite partial density of 2.0 Mg/m3 and approximately 10 MPa at a montmorillonite partial density of 1.4 Mg/m3. The swelling stresses in the high-density region (around 2.0 Mg/m3) were higher than that of Na-montmorillonite and were similar levels in the low-density region (around 1.5 Mg/m3). Comparison with measured data showed the practicality of the thermodynamic model

    Use of a Polyetheretherketone Clasp Retainer for Removable Partial Denture : A Case Report

    Get PDF
    Clasp retainers made of metal alloys may be esthetically unappealing or cause allergic reactions. To investigate alternative materials, we used the nonfiller polyetheretherketone (PEEK) to fabricate the clasp retainer of a removable partial denture for the mandibular bilateral distal free-end abutment of an 84-year-old female. Two years later, few color and texture changes of PEEK were found macroscopically. The rest part and the clasp arm fitted well without any deformation. There were no particular occlusal or periodontal problems. Subjective satisfaction was expressed by both the practitioner and the patient

    Noise simulation system for determining imaging conditions in digital radiography

    Get PDF
    Reduction of exposure dose and improvement in image quality can be expected to result from advances in the performance of imaging detectors. We propose a computerized method for determining optimized imaging conditions by use of simulated images. This study was performed to develop a prototype system for image noise and to ensure consistency between the resulting images and actual images. An RQA5 X-ray spectrum was used for determination of input-output characteristics of a flat-panel detector (FPD). The number of incident quantum to the detector per pixel (counts/pixel) was calculated according to the pixel size of the detector and the quantum number in RQA5 determined in IEC6220-1. The relationship among tube current-time product (mAs), exposure dose (C/kg) at the detector surface, the number of incident quanta (counts/pixel), and pixel values measured on the images was addressed, and a conversion function was then created. The images obtained by the FPD was converted into a map of incident quantum numbers and input into random-value generator to simulate image noise. In addition, graphic user interface was developed to observe images with changing image noise and exposure dose levels, which have trade-off relationship. Simulation images provided at different noise levels were compared with actual images obtained by the FPD system. The results indicated that image noise was simulated properly both in objective and subjective evaluation. The present system could allow us to determine necessary dose from image quality and also to estimate image quality from any exposure dose. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE)

    Review of a simple noise simulation technique in digital radiography

    Get PDF
    Reduction of exposure dose and improvement in image quality can be expected to result from advances in the performance of imaging detectors. A number of researchers have reported on methods for simulating reduced dose images. The simplest method provides reduced dose images by adding white Gaussian noise with a certain standard deviation to the original image. Our aim in this study was to develop and validate a system with a graphic user interface for simulating reduced dose images by a simple method. Here, we describe a technical approach with the use of a flat-panel detector system, and we validated the simulation performance in reducing the dose objectively and subjectively. In addition, the technical limitations and possible solutions to the simple method are suggested based on the validation results presented in this paper. © 2012 Japanese Society of Radiological Technology and Japan Society of Medical Physics.発行後1年より全文公開

    Suzaku observations of the Hydra A cluster out to the virial radius

    Full text link
    We report Suzaku observations of the northern half of the Hydra A cluster out to ~1.4 Mpc, reaching the virial radius. This is the first Suzaku observations of a medium-size (kT ~3 keV) cluster out to the virial radius. Two observations were conducted, north-west and north-east offsets, which continue in a filament direction and a void direction of the large-scale structure of the Universe, respectively. The X-ray emission and distribution of galaxies elongate in the filament direction. The temperature profiles in the two directions are mostly consistent with each other within the error bars and drop to 1.5 keV at 1.5 r_500. As observed by Suzaku in hot clusters, the entropy profile becomes flatter beyond r_500, in disagreement with the r^1.1 relationship that is expected from accretion shock heating models. When scaled with the average intracluster medium (ICM) temperature, the entropy profiles of clusters observed with Suzaku are universal and do not depend on system mass. The hydrostatic mass values in the void and filament directions are in good agreement, and the Navarro, Frenk, and White universal mass profile represents the hydrostatic mass distribution up to ~ 2 r_500. Beyond r_500, the ratio of gas mass to hydrostatic mass exceeds the result of the Wilkinson microwave anisotropy probe, and at r_100, these ratios in the filament and void directions reach 0.4 and 0.3, respectively. We discuss possible deviations from hydrostatic equilibrium at cluster outskirts. We derived radial profiles of the gasmass- to-light ratio and iron-mass-to-light ratio out to the virial radius. Within r_500, the iron-mass-to-light ratio of the Hydra A cluster was compared with those in other clusters observed with Suzaku.Comment: 16 pages, 15 figures; Accepted for publication in PAS

    Simulation system for understanding the lag effect in fluoroscopic images

    Get PDF
    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). It is crucial to understand the effects of image lag for real-time tumor tracking. Our purpose in this study was to develop a lag simulation system based on the image lag properties of an FPD system. Image lag properties were measured on flat-field images both in direct- and indirect-conversion dynamic FPDs. A moving target with image lag was simulated based on the lag properties in all combinations of FPD types, imaging rates, exposure doses, and target speeds, and then compared with actual moving targets for investigation of the reproducibility of image lag. Image lag was simulated successfully and agreed well with the actual lag as well as with the predicted effect. In the indirect-conversion FPD, a higher dose caused greater image lag on images. In contrast, there were no significant differences among dose levels in a direct-conversion FPD. There were no relationships between target speed and amount of image blurring in either type of FPD. The maximum contour blurring and the rate of increase in pixel value due to image lag were 1.1 mm and 10.0 %, respectively, in all combinations of imaging parameters examined in this study. Blurred boundaries and changes in pixel value due to image lag were estimated under various imaging conditions with use of the simulation system. Our system would be helpful for a better understanding of the effects of image lag in fluoroscopic images. © 2012 Japanese Society of Radiological Technology and Japan Society of Medical Physics

    A comprehensive survey on quantum computer usage: How many qubits are employed for what purposes?

    Full text link
    Quantum computers (QCs), which work based on the law of quantum mechanics, are expected to be faster than classical computers in several computational tasks such as prime factoring and simulation of quantum many-body systems. In the last decade, research and development of QCs have rapidly advanced. Now hundreds of physical qubits are at our disposal, and one can find several remarkable experiments actually outperforming the classical computer in a specific computational task. On the other hand, it is unclear what the typical usages of the QCs are. Here we conduct an extensive survey on the papers that are posted in the quant-ph section in arXiv and claim to have used QCs in their abstracts. To understand the current situation of the research and development of the QCs, we evaluated the descriptive statistics about the papers, including the number of qubits employed, QPU vendors, application domains and so on. Our survey shows that the annual number of publications is increasing, and the typical number of qubits employed is about six to ten, growing along with the increase in the quantum volume (QV). Most of the preprints are devoted to applications such as quantum machine learning, condensed matter physics, and quantum chemistry, while quantum error correction and quantum noise mitigation use more qubits than the other topics. These imply that the increase in QV is fundamentally relevant, and more experiments for quantum error correction, and noise mitigation using shallow circuits with more qubits will take place.Comment: 14 pages, 5 figures, figures regenerate

    Pathophysiological analyses of cortical malformation using gyrencephalic mammals

    Get PDF
    One of the most prominent features of the cerebral cortex of higher mammals is the presence of gyri. Because malformations of the cortical gyri are associated with severe disability in brain function, the mechanisms underlying malformations of the cortical gyri have been of great interest. Combining gyrencephalic carnivore ferrets and genetic manipulations using in utero electroporation, here we successfully recapitulated the cortical phenotypes of thanatophoric dysplasia (TD) by expressing fibroblast growth factor 8 in the ferret cerebral cortex. Strikingly, in contrast to TD mice, our TD ferret model showed not only megalencephaly but also polymicrogyria. We further uncovered that outer radial glial cells (oRGs) and intermediate progenitor cells (IPs) were markedly increased. Because it has been proposed that increased oRGs and/or IPs resulted in the appearance of cortical gyri during evolution, it seemed possible that increased oRGs and IPs underlie the pathogenesis of polymicrogyria. Our findings should help shed light on the molecular mechanisms underlying the formation and malformation of cortical gyri in higher mammals. © 2015 Macmillan Publishers Limited

    無歯顎患者における概形印象の精度に関する3次元評価 : 研究用模型と作業用模型の3次元形状の比較

    Get PDF
    Purpose: The aim of this study was to compare 3-dimensional surfaces of study and working casts for edentulous jaws and to evaluate the accuracy of preliminary impressions with a view to the future application of digital dentistry for edentulous jaws. Methods: Forty edentulous volunteers were serially recruited. Nine dentists took preliminary and final impressions in a routine clinical work-up. The study and working casts were digitized using a dental 3-dimensional scanner. The two surface images were superimposed through a least-square algorithm using imaging software and compared qualitatively. Furthermore, the surface of each jaw was divided into 6 sections, and the difference between the 2 images was quantitatively evaluated. Results: Overall inspection showed that the difference around residual ridges was small and that around borders were large. The mean differences in the upper and lower jaws were 0.26 mm and 0.45 mm, respectively. The maximum values of the differences showed that the upward change mainly occurred in the anterior residual ridge, and the downward change mainly in the posterior border seal, and the labial and buccal vestibules, whereas every border of final impression was shortened in the lower jaw. The accuracy in all areas except the border, which forms the foundation, was estimated to be less than 0.25 mm. Conclusion: Using digital technology, we here showed the overall and sectional accuracy of the preliminary impression for edentulous jaws. In our clinic, preliminary impressions have been made using an alginate material while ensuring that the requisite impression area was covered
    corecore