61 research outputs found

    Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas

    Get PDF
    We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it has all the hallmarks of the endosymbionts’ genomes, such as significantly reduced size, extensive gene loss, low GC content, numerous gene rearrangements, and low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, has a strikingly low number of pseudogenes, and almost all genes are single copied. This suggests that it already passed the intensive period of host adaptation, which still can be observed in the genome of Polynucleobacter necessarius, a certainly recent endosymbiont. Phylogenetically, Ca. P. novymonadis is more related to P. necessarius, an intracytoplasmic bacterium of free-living ciliates, than to Ca. Kinetoplastibacterium spp., the only other known endosymbionts of trypanosomatid flagellates. As judged by the extent of the overall genome reduction and the loss of particular metabolic abilities correlating with the increasing dependence of the symbiont on its host, Ca. P. novymonadis occupies an intermediate position P. necessarius and Ca. Kinetoplastibacterium spp. We conclude that the relationships between Ca. P. novymonadis and N. esmeraldas are well-established, although not as fine-tuned as in the case of Strigomonadinae and their endosymbionts

    Host specificity, pathogenicity, and mixed infections of trypanoplasms from freshwater fishes.

    No full text
    Abstract This work summarizes the results of the 8-year study focused on Trypanoplasma sp. parasitizing freshwater fishes in the vicinity of Kyiv, Ukraine. Out of 570 fish specimens of 2 different species analyzed, 440 individuals were found to be infected. The prevalence of infection ranged from 24 % in Abramis brama Linnaeus (freshwater bream) to 100 % in Cobitis taenia Linnaeus (spined loach). The level of parasitemia also varied between moderate in freshwater bream and very high in spined loach. Interestingly, no clinical manifestations of trypanoplasmosis were observed even in extremely heavily infected C. taenia. We hypothesize that different species may differ in evolutionary timing allowing for reciprocal adaptation of the members of the "host-parasite" system. Molecular analysis of the 18S rRNA sequences revealed that several specimens were simultaneously infected with at least two different trypanoplasm species. To the best of our knowledge, this is the first report of the mixed infection with fish trypanoplasms

    Obligate development of Blastocrithidia papi (Trypanosomatidae) in the Malpighian tubules of Pyrrhocoris apterus (Hemiptera) and coordination of host-parasite life cycles.

    No full text
    Blastocrithidia papi is a unique trypanosomatid in that its life cycle is synchronized with that of its host, and includes an obligate stage of development in Malpighian tubules (MTs). This occurs in firebugs, which exited the winter diapause. In the short period, preceding the mating of overwintered insects, the flagellates penetrate MTs of the host, multiply attached to the epithelial surface with their flagella, and start forming cyst-like amastigotes (CLAs) in large agglomerates. By the moment of oviposition, a large number of CLAs are already available in the rectum. They are discharged on the eggs' surface with feces, used for transmission of bugs' symbiotic bacteria, which are compulsorily engulfed by the newly hatched nymphs along with the CLAs. The obligate development of B. papi in MTs is definitely linked to the life cycle synchronization. The absence of peristalsis allow the trypanosomatids to accumulate and form dense CLA-forming subpopulations, whereas the lack of peritrophic structures facilitates the extensive discharge of CLAs directly into the hindgut lumen. The massive release of CLAs associated with oviposition is indispensable for maximization of the infection efficiency at the most favorable time point

    RNA Viruses in Blechomonas (Trypanosomatidae) and Evolution of Leishmaniavirus

    No full text
    Flagellates belonging to the genus Leishmania are important human parasites. Some strains of different Leishmania species harbor viruses (leishmaniaviruses), which facilitate metastatic spread of the parasites, thus aggravating the disease. Up until now, these viruses were known to be hosted only by Leishmania. Here, we analyzed viral distribution in Blechomonas, a related group of flagellates parasitizing fleas, and revealed that they also bear leishmaniaviruses. Our findings shed light on the entangled evolution of these viruses. In addition, we documented that Blechomonas can be also infected by leishbunyaviruses and narnaviruses, viral groups known from other insects’ flagellates.In this work, we analyzed viral prevalence in trypanosomatid parasites (Blechomonas spp.) infecting Siphonaptera and discovered nine species of viruses from three different groups (leishbunyaviruses, narnaviruses, and leishmaniaviruses). Most of the flagellate isolates bore two or three viral types (mixed infections). Although no new viral groups were documented in Blechomonas spp., our findings are important for the comprehension of viral evolution. The discovery of bunyaviruses in blechomonads was anticipated, since these viruses have envelopes facilitating their interspecific transmission and have already been found in various trypanosomatids and metatranscriptomes with trypanosomatid signatures. In this work, we also provided evidence that even representatives of the family Narnaviridae are capable of host switching and evidently have accomplished switches multiple times in the course of their evolution. The most unexpected finding was the presence of leishmaniaviruses, a group previously solely confined to the human pathogens Leishmania spp. From phylogenetic inferences and analyses of the life cycles of Leishmania and Blechomonas, we concluded that a common ancestor of leishmaniaviruses most likely infected Leishmania first and was acquired by Blechomonas by horizontal transfer. Our findings demonstrate that evolution of leishmaniaviruses is more complex than previously thought and includes occasional host switching
    corecore