20 research outputs found
Calcium- and Integrin-Binding Protein 1 Regulates Endomitosis and Its Interaction with Polo-Like Kinase 3 Is Enhanced in Endomitotic Dami Cells
Endomitosis is a form of mitosis in which both karyokinesis and cytokinesis are interrupted and is a hallmark of megakaryocyte differentiation. Very little is known about how such a dramatic alteration of the cell cycle in a physiological setting is achieved. Thrombopoietin-induced signaling is essential for induction of endomitosis. Here we show that calcium- and integrin-binding protein 1 (CIB1), a known regulator of platelet integrin αIIbβ3 outside-in signaling, regulates endomitosis. We observed that CIB1 expression is increased in primary mouse megakaryocytes compared to mononuclear bone marrow cells as determined by Western blot analysis. Following PMA treatment of Dami cells, a megakaryoblastic cell line, we found that CIB1 protein expression increased concomitant with cell ploidy. Overexpression of CIB1 in Dami cells resulted in multilobated nuclei and led to increased time for a cell to complete cytokinesis as well as increased incidence of furrow regression as observed by time-lapse microscopy. Additionally, we found that surface expression of integrin αIIbβ3, an important megakaryocyte marker, was enhanced in CIB1 overexpressing cells as determined by flow cytometry. Furthermore, PMA treatment of CIB1 overexpressing cells led to increased ploidy compared to PMA treated control cells. Interestingly, expression of Polo-like kinase 3 (Plk3), an established CIB1-interacting protein and a key regulator of the mitotic process, decreased upon PMA treatment of Dami cells. Furthermore, PMA treatment augmented the interaction between CIB1 and Plk3, which depended on the duration of treatment. These data suggest that CIB1 is involved in regulating endomitosis, perhaps through its interaction with Plk3
D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function.
Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor. PDS25 has normal blood cell counts and no history of bleeding diathesis. However, platelets from PDS25 have virtually no response to 2-MeSADP (a stable analogue of ADP). Genetic analysis of P2Y12 from PDS25 revealed a heterozygous mutation of D121N within the DRY motif. Rap1b activity was reduced in platelets from PDS25, while VASP phosphorylation was enhanced, suggesting that signaling from the P2Y12 receptor was interrupted by the heterozygous mutation. To explore this further, we produced knock-in mice that mimic our subject. Bleeding failed to cease in homozygous KI mice during tail bleeding assays, while tail bleeding times did not differ between WT and heterozygous KI mice. Furthermore, occlusions failed to form in most homozygous KI mice following carotid artery injury via FeCl3. These data indicate that the aspartic acid residue found in the DRY motif of P2Y12 is essential for P2Y12 function
Relative fat oxidation is higher in children than adults
Background: Prepubescent children may oxidize fatty acids more readily than adults. Therefore, dietary fat needs would be higher for children compared with adults. The dietary fat recommendations are higher for children 4 to 18 yrs (i.e., 25 to 35% of energy) compared with adults (i.e., 20 to 35% of energy). Despite this, many parents and children restrict dietary fat for health reasons. Methods: This study assessed whether rates of fat oxidation are similar between prepubescent children and adults. Ten children (8.7 ± 1.4 yr, 33 ± 13 kg mean ± SD) in Tanner stage 1 and 10 adults (41.6 ± 8 yr, 74 ± 13 kg) were fed a weight maintenance diet for three days to maintain body weight and to establish a consistent background for metabolic rate measurements (all foods provided). Metabolic rate was measured on three separate occasions before and immediately after breakfast and for 9 hrs using a hood system (twice) or a room calorimeter (once) where continuous metabolic measurements were taken. Results: During all three sessions whole body fat oxidation was higher in children (lower RQ) compared to adults (mean RQ= 0.84 ± .016 for children and 0.87 ± .02, for adults, p < 0.02). Although, total grams of fat oxidized was similar in children (62.7 ± 20 g/24 hrs) compared to adults (51.4 ± 19 g/24 hrs), the grams of fat oxidized relative to calorie expenditure was higher in children (0.047 ± .01 g/kcal, compared to adults (0.032 ± .01 p < 0.02). Females oxidized more fat relative to calorie expenditure than males of a similar age. A two way ANOVA showed no interaction between gender and age in terms of fax oxidation. Conclusion: These data suggest that fat oxidation relative to total calorie expenditure is higher in prepubescent children than in adults. Consistent with current dietary guidelines, a moderate fat diet is appropriate for children within the context of a diet that meets their energy and nutrient needs. Originally published Nutrition Journal, Vol. 6, No. 19, Aug 200
Platelet recovery and rebound thrombocytosis is enhanced in PKCε<sup>-/-</sup> mice following immune-induced thrombocytopenia.
<p>A) PKCε<sup>+/+</sup> and PKCε<sup>-/-</sup> Mice were injected (I.P.) with 50 μg/kg anti-mouse CD41 antibody at day 0. Blood was collected daily via submandibular puncture for 5 days and again on day 7 and platelets were enumerated. * p < 0.05 compared to corresponding PKCε<sup>+/+</sup> time point, n = 7. B) Representative images of proplatelet producing megakayrocytes. C) Quantitation of proplatelet production taken from several fields per experiment, expressed as a percentage of total megakaryocytes. *p < 0.05, n = 11.</p
PKC-epsilon deficiency alters progenitor cell populations in favor of megakaryopoiesis
<div><p>Background</p><p>It has long been postulated that Protein Kinase C (PKC) is an important regulator of megakaryopoiesis. Recent contributions to the literature have outlined the functions of several individual PKC isoforms with regard to megakaryocyte differentiation and platelet production. However, the exact role of PKCε remains elusive.</p><p>Objective</p><p>To delineate the role of PKCε in megakaryopoiesis.</p><p>Approach and results</p><p>We used a PKCε knockout mouse model to examine the effect of PKCε deficiency on platelet mass, megakaryocyte mass, and bone marrow progenitor cell distribution. We also investigated platelet recovery in PKCε null mice and TPO-mediated signaling in PKCε null megakaryocytes. PKCε null mice have higher platelet counts due to increased platelet production compared to WT littermate controls (p<0.05, n = 8). Furthermore, PKCε null mice have more bone marrow megakaryocyte progenitor cells than WT littermate control mice. Additionally, thrombopoietin-mediated signaling is perturbed in PKCε null mice as Akt and ERK1/2 phosphorylation are enhanced in PKCε null megakaryocytes stimulated with thrombopoietin. Finally, in response to immune-induced thrombocytopenia, PKCε null mice recovered faster and had higher rebound thrombocytosis than WT littermate control mice.</p><p>Conclusions</p><p>Enhanced platelet recovery could be due to an increase in megakaryocyte progenitor cells found in PKCε null mice as well as enhanced thrombopoietin-mediated signaling observed in PKCε deficient megakaryocytes. These data suggest that PKCε is a negative regulator of megakaryopoiesis.</p></div
Blood cell counts in PKCε<sup>+/+</sup> and PKCε<sup>-/-</sup> mice.
<p>Blood cell counts in PKCε<sup>+/+</sup> and PKCε<sup>-/-</sup> mice.</p
D121 Located within the DRY Motif of P2Y12 Is Essential for P2Y12-Mediated Platelet Function
Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor. PDS25 has normal blood cell counts and no history of bleeding diathesis. However, platelets from PDS25 have virtually no response to 2-MeSADP (a stable analogue of ADP). Genetic analysis of P2Y12 from PDS25 revealed a heterozygous mutation of D121N within the DRY motif. Rap1b activity was reduced in platelets from PDS25, while VASP phosphorylation was enhanced, suggesting that signaling from the P2Y12 receptor was interrupted by the heterozygous mutation. To explore this further, we produced knock-in mice that mimic our subject. Bleeding failed to cease in homozygous KI mice during tail bleeding assays, while tail bleeding times did not differ between WT and heterozygous KI mice. Furthermore, occlusions failed to form in most homozygous KI mice following carotid artery injury via FeCl3. These data indicate that the aspartic acid residue found in the DRY motif of P2Y12 is essential for P2Y12 function
PKCε<sup>-/-</sup> mice have a reduced LSK population, but a heightened megakaryocyte progenitor cell population.
<p>A) Schematic showing gates used to define each progenitor cell population. LK cells are defined as Lineage (Lin) negative cells that stain C-Kit+, Sca-1-. LSK cells stain Lin-, Sca-1+, C-Kit+. Megakaryocyte progenitors (MkP) are from the LK population and stain CD41+, CD150+. The LSK population is used to define multipotent progenitor cells (MPP), which stain CD105- and CD150-, as well as hematopoietic stem cells (HSC), which stain CD105+ and CD150+. B-F) Quantification of each progenitor cell population as defined in A in PKCε<sup>+/+</sup> and PKCε<sup>-/-</sup> mouse bone marrow expressed as a percentage of total bone marrow cells. * p < 0.05 compared to PKCε<sup>+/+</sup>, n = 4.</p
Megakaryocyte number is enhanced in PKCε<sup>-/-</sup> bone marrow cultured with exogenous TPO.
<p>A) Megakaryocyte DNA content in PKCε<sup>-/-</sup> and PKCε<sup>+/+</sup> bone marrow cultured in the presence of 50 ng/mL TPO. B) Megakaryocyte number is cultured bone marrow from PKCε<sup>-/-</sup> and PKCε<sup>+/+</sup> mice supplemented with 50 ng/mL TPO. * p < 0.05 compared to PKCε<sup>+/+</sup>, n = 7.</p