32 research outputs found

    P38α-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading

    Get PDF
    To test the hypothesis that p38α-MAPK plays a critical role in the regulation of E3 ligase expression and skeletal muscle atrophy during unloading, we used VX-745, a selective p38α inhibitor. Three groups of rats were used: non-treated control (C), 3 days of unloading/hindlimb suspension (HS), and 3 days HS with VX-745 inhibitor (HSVX; 10 mg/kg/day). Total weight of soleus muscle in HS group was reduced compared to C (72.3 ± 2.5 vs 83.0 ± 3 mg, respectively), whereas muscle weight in the HSVX group was maintained (84.2 ± 5 mg). The expression of muscle RING-finger protein-1 (MuRF1) mRNA was significantly increased in the HS group (165%), but not in the HSVX group (127%), when compared with the C group. The expression of muscle-specific E3 ubiquitin ligases muscle atrophy F-box (MAFbx) mRNA was increased in both HS and HSVX groups (294% and 271%, respectively) when compared with C group. The expression of ubiquitin mRNA was significantly higher in the HS (423%) than in the C and HSVX (200%) groups. VX-745 treatment blocked unloading-induced upregulation of calpain-1 mRNA expression (HS: 120%; HSVX: 107%). These results indicate that p38α-MAPK signaling regulates MuRF1 but not MAFbx E3 ligase expression and inhibits skeletal muscle atrophy during early stages of unloading

    Effect of implantation on engineered skeletal muscle constructs

    Full text link
    The development of engineered skeletal muscle would provide a viable tissue for replacement and repair of muscle damaged by disease or injury. Our current tissue‐engineering methods result in three‐dimensional (3D) muscle constructs that generate tension but do not advance phenotypically beyond neonatal characteristics. To develop to an adult phenotype, innervation and vascularization of the construct must occur. In this study, 3D muscle constructs were implanted into the hindlimb of a rat, along the sciatic nerve, with the sural nerve isolated, transected and sutured to the construct to encourage innervation. Aortic ring anchors were sutured to the tendons of the biceps femoris muscle so that the construct would move dynamically with the endogenous muscle. After 1 week in vivo , the constructs were explanted, evaluated for force production and stained for muscle, nerve and collagen markers. Implanted muscle constructs showed a developing capillary system, an epimysium‐like outer layer of connective tissue and an increase in myofibre content. The beginning of α ‐bungarotoxin clustering suggests that neuromuscular junctions (NMJs) could form on the implanted muscle, given more time in vivo . Additionally, the constructs increased maximum isometric force from 192 ± 41 ÎŒN to 549 ± 103 ÎŒN (245% increase) compared to in vitro controls, which increased from 276 ± 23 ÎŒN to 329 ± 27ÎŒN (25% increase). These findings suggest that engineered muscle tissue survives 1 week of implantation and begins to develop the necessary interfaces needed to advance the phenotype toward adult muscle. However, in terms of force production, the muscle constructs need longer implantation times to fully develop an adult phenotype. Copyright © 2012 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98423/1/term537.pd

    Double p52Shc/p46Shc Rat Knockout Demonstrates Severe Gait Abnormalities Accompanied by Dilated Cardiomyopathy

    Get PDF
    The ubiquitously expressed adaptor protein Shc exists in three isoforms p46Shc, p52Shc, and p66Shc, which execute distinctly different actions in cells. The role of p46Shc is insufficiently studied, and the purpose of this study was to further investigate its functional significance. We developed unique rat mutants lacking p52Shc and p46Shc isoforms (p52Shc/46Shc-KO) and carried out histological analysis of skeletal and cardiac muscle of parental and genetically modified rats with impaired gait. p52Shc/46Shc-KO rats demonstrate severe functional abnormalities associated with impaired gait. Our analysis of p52Shc/46Shc-KO rat axons and myelin sheets in cross-sections of the sciatic nerve revealed the presence of significant anomalies. Based on the lack of skeletal muscle fiber atrophy and the presence of sciatic nerve abnormalities, we suggest that the impaired gait in p52Shc/46Shc-KO rats might be due to the sensory feedback from active muscle to the brain locomotor centers. The lack of dystrophin in some heart muscle fibers reflects damage due to dilated cardiomyopathy. Since rats with only p52Shc knockout do not display the phenotype of p52Shc/p46Shc-KO, abnormal locomotion is likely to be caused by p46Shc deletion. Our data suggest a previously unknown role of 46Shc actions and signaling in regulation of gait

    Differences in the Role of HDACs 4 and 5 in the Modulation of Processes Regulating MAFbx and MuRF1 Expression during Muscle Unloading

    Get PDF
    Unloading leads to skeletal muscle atrophy via the upregulation of MuRF-1 and MAFbx E3-ligases expression. Reportedly, histone deacetylases (HDACs) 4 and 5 may regulate the expression of MuRF1 and MAFbx. To examine the HDAC-dependent mechanisms involved in the control of E3-ubiquitin ligases expression at the early stages of muscle unloading we used HDACs 4 and 5 inhibitor LMK-235 and HDAC 4 inhibitor Tasqinimod (Tq). Male Wistar rats were divided into four groups (eight rats per group): nontreated control (C), three days of unloading/hindlimb suspension (HS) and three days HS with HDACs inhibitor LMK-235 (HSLMK) or Tq (HSTq). Treatment with LMK-235 diminished unloading-induced of MAFbx, myogenin (MYOG), ubiquitin and calpain-1 mRNA expression (p < 0.05). Tq administration had no effect on the expression of E3-ligases. The mRNA expression of MuRF1 and MAFbx was significantly increased in both HS and HSTq groups (1.5 and 4.0 folds, respectively; p < 0.05) when compared with the C group. It is concluded that during three days of muscle unloading: (1) the HDACs 4 and 5 participate in the regulation of MAFbx expression as well as the expression of MYOG, ubiquitin and calpain-1; (2) the inhibition of HDAC 4 has no effect on MAFbx expression. Therefore, HDAC 5 is perhaps more important for the regulation of MAFbx expression than HDAC 4

    Role of Pannexin 1 ATP-Permeable Channels in the Regulation of Signaling Pathways during Skeletal Muscle Unloading

    Get PDF
    Skeletal muscle unloading results in atrophy. We hypothesized that pannexin 1 ATP-permeable channel (PANX1) is involved in the response of muscle to unloading. We tested this hypothesis by blocking PANX1, which regulates efflux of ATP from the cytoplasm. Rats were divided into six groups (eight rats each): non-treated control for 1 and 3 days of the experiments (1C and 3C, respectively), 1 and 3 days of hindlimb suspension (HS) with placebo (1H and 3H, respectively), and 1 and 3 days of HS with PANX1 inhibitor probenecid (PRB; 1HP and 3HP, respectively). When compared with 3C group there was a significant increase in ATP in soleus muscle of 3H and 3HP groups (32 and 51%, respectively, p < 0.05). When compared with 3H group, 3HP group had: (1) lower mRNA expression of E3 ligases MuRF1 and MAFbx (by 50 and 38% respectively, p < 0.05) and MYOG (by 34%, p < 0.05); (2) higher phosphorylation of p70S6k and p90RSK (by 51 and 35% respectively, p < 0.05); (3) lower levels of phosphorylated eEF2 (by 157%, p < 0.05); (4) higher level of phosphorylated GSK3ÎČ (by 189%, p < 0.05). In conclusion, PANX1 ATP-permeable channels are involved in the regulation of muscle atrophic processes by modulating expression of E3 ligases, and protein translation and elongation processes during unloading

    Structure and Functional Evaluation of Tendon–Skeletal Muscle Constructs Engineered in Vitro

    Full text link
    During muscle contraction, the integrity of the myotendinous junction (MTJ) is important for the transmission of force from muscle to tendon. We evaluated the contractile and structural characteristics of 3-dimensional (3-D) skeletal muscle constructs co-cultured with engineered self-organized tendon constructs (n = 4), or segments of adult (n = 4) or fetal (n = 5) rat-tail tendon. We hypothesized that the co-culture of tendon and muscle would produce constructs with viable muscle–tendon interfaces that remain intact during generation of force. Construct diameter (lm) and maximum isometric force (”N) were measured, and specific force (kPa) was determined. After measure of force, constructs were loaded at a constant strain rate until failure and surface strains were recorded optically across the tendon, the muscle and the interface and used to determine the tangent modulus (passive stiffness) of the construct. Frozen samples were used for Trichrome Masson staining and immunofluorescent analysis of the MTJ-specific protein paxillin. No differences were observed between the groups with respect to diameter, maximum force, or specific force. The MTJ was robust and withstood tensile loading beyond the physiological strain range. The majority of the constructs failed in the muscle region. At the MTJ, there is an increase in the expression and localization of paxillin. In conclusion, using 3 sources of tendon tissue, we successfully engineered 3-D muscle–tendon constructs with functionally viable MTJ, characterized by structural features and protein expression patterns resembling neonatal MTJs in vivo.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63387/1/ten.2006.12.3149.pd

    Characterization of skeletal muscle effects associated with daptomycin in rats

    Full text link
    Daptomycin is a lipopeptide antibiotic with strong bactericidal effects against Gram-positive bacteria and minor side effects on skeletal muscles. The type and magnitude of the early effect of daptomycin on skeletal muscles of rats was quantified by histopathology, examination of contractile properties, Evans Blue Dye uptake, and effect on the patch repair process. A single dose of daptomycin of up to 200 mg/kg had no effect on muscle fibers. A dose of 150 mg/kg of daptomycin, twice per day for 3 days, produced a small number of myofibers (≀0.22%) with loss of plasma membrane integrity and/or infiltration by neutrophils and/or macrophages. Multiple doses of daptomycin are required for a quantifiable effect on skeletal muscles of rats. Some fibers were Evans Blue Dye–positive but were not yet infiltrated by neutrophils. This suggests that the sarcolemma may be the primary target for the observed effects. Muscle Nerve, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77978/1/21691_ftp.pd

    Three-Dimensional Engineered Bone–Ligament–Bone Constructs for Anterior Cruciate Ligament Replacement

    Full text link
    The anterior cruciate ligament (ACL), a major stabilizer of the knee, is commonly injured. Because of its intrinsic poor healing ability, a torn ACL is usually reconstructed by a graft. We developed a multi-phasic, or bone?ligament?bone, tissue-engineered construct for ACL grafts using bone marrow stromal cells and sheep as a model system. After 6 months in vivo, the constructs increased in cross section and exhibited a well-organized microstructure, native bone integration, a functional enthesis, vascularization, innervation, increased collagen content, and structural alignment. The constructs increased in stiffness to 52% of the tangent modulus and 95% of the geometric stiffness of native ACL. The viscoelastic response of the explants was virtually indistinguishable from that of adult ACL. These results suggest that our constructs after implantation can obtain physiologically relevant structural and functional characteristics comparable to those of adult ACL. They present a viable option for ACL replacement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98477/1/ten%2Etea%2E2011%2E0231.pd

    MyoD and myogenin protein expression in skeletal muscles of senile rats

    Full text link
    We analyzed the level of protein expression of two myogenic regulatory factors (MRFs), MyoD and myogenin, in senile skeletal muscles and determined the cellular source of their production in young adult (4 months old), old (24, 26, and 28 months old), and senile (32 months old) male rats. Immunoblotting demonstrated levels of myogenin ~3.2, ~4.0, and ~5.5 times higher in gastrocnemius muscles of 24-, 26-, and 32-month-old animals, respectively, than in those of young adult rats. Anti-MyoD antibody recognized two major areas of immunoreactivity in Western blots: a single MyoD-specific band (~43–45 kDa) and a double (or triple) MyoD-like band (~55–65 kDa). Whereas the level of MyoD-specific protein in the 43- to 45-kDa band remained relatively unchanged during aging compared with that of young adult rats, the total level of MyoD-like immunoreactivity within the 55- to 65-kDa bands was ~3.4, ~4.7, ~9.1, and ~11.7 times higher in muscles of 24-, 26-, 28-, and 32-month-old rats, respectively. The pattern of MRF protein expression in intact senile muscles was similar to that recorded in young adult denervated muscles. Ultrastructural analysis of extensor digitorum longus muscle from senile rats showed that, occasionally, the area of the nerve-muscle junction was partially or completely devoid of axons, and satellite cells with the features of activated cells were found on the surface of living fibers. Immunohistochemistry detected accumulated MyoD and myogenin proteins in the nuclei of both fibers and satellite cells in 32-month-old muscles. We suggest that the up-regulated production of MyoD and myogenin proteins in the nuclei of both fibers and satellite cells could account for the high level of MRF expression in muscles of senile rats.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42276/1/s00441-002-0686-9.pd

    Skeletal Muscle Denervation: Past, Present and Future

    No full text
    This Special Issue presents some of the most recent studies on the skeletal muscle denervation
    corecore