326 research outputs found

    Generation of Circular Polarization of the Cosmic Microwave Background

    Get PDF
    The standard cosmological model, which includes only Compton scattering photon interactions at energy scales near recombination, results in zero primordial circular polarization of the cosmic microwave background. In this paper we consider a particular renormalizable and gauge-invariant standard model extension coupling photons to an external vector field via a Chern-Simons term, which arises as a radiative correction if gravitational torsion couples to fermions. We compute the transport equations for polarized photons from a Boltzmann-like equation, showing that such a coupling will source circular polarization of the microwave background. For the particular coupling considered here, the circular polarization effect is always negligible compared to the rotation of the linear polarization orientation, also derived using the same formalism. We note the possibility that limits on microwave background circular polarization may probe other photon interactions and related fundamental effects such as violations of Lorentz invariance.Comment: 20 pages. Revised version includes an explicit calculation of gauge invariance. Text reorganized to improve clarity, and references adde

    The Sunyaev-Zeldovich Effect from Quasar Feedback

    Get PDF
    The observed relationship between X-ray luminosity and temperature of the diffuse intercluster medium clearly shows the effect of nongravitational heating on the formation of galaxy clusters. Quasar feedback into the intergalactic medium can potentially be an important source of heating, and can have significant impact on structure formation. This feedback process is a source of thermal Sunyaev-Zel'dovich distortions of the cosmic microwave background. Using a simple one-dimensional Sedov-Taylor model of energy outflow, we calculate the angular power spectrum of the temperature distortion, which has an amplitude on the order of one micro-Kelvin. This signal will be at the noise limit of upcoming arcminute-scale microwave background experiments, including the Atacama Cosmology Telescope and the South Pole Telescope, but will be directly detectable with deep exposures by the Atacama Large Millimeter Array or by stacking many microwave images.Comment: The discussion of detectability is expanded. Matches the ApJ Letters accepted versio

    A Limit on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    A ground-based polarimeter, PIQUE, operating at 90 GHz has set a new limit on the magnitude of any polarized anisotropy in the cosmic microwave background. The combination of the scan strategy and full width half maximum beam of 0.235 degrees gives broad window functions with average multipoles, l = 211+294-146 and l = 212+229-135 for the E- and B-mode window functions, respectively. A joint likelihood analysis yields simultaneous 95% confidence level flat band power limits of 14 and 13 microkelvin on the amplitudes of the E- and B-mode angular power spectra, respectively. Assuming no B-modes, a 95% confidence limit of 10 microkelvin is placed on the amplitude of the E-mode angular power spectrum alone.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    Green's function for gravitational waves in FRW spacetimes

    Full text link
    A method for calculating the retarded Green's function for the gravitational wave equation in Friedmann-Roberson-Walker spacetimes, within the formalism of linearized Einstein gravity is developed. Hadamard's general solution to Cauchy's problem for second-order, linear partial differential equations is applied to the FRW gravitational wave equation. The retarded Green's function may be calculated for any FRW spacetime, with curved or flat spatial sections, for which the functional form of the Ricci scalar curvature RR is known. The retarded Green's function for gravitational waves propagating through a cosmological fluid composed of both radiation and dust is calculated analytically for the first time. It is also shown that for all FRW spacetimes in which the Ricci scalar curvatures does not vanish, R≠0R \neq 0, the Green's function violates Huygens' principle; the Green's function has support inside the light-cone due to the scatter of gravitational waves off the background curvature.Comment: 9 pages, FERMILAB-Pub-93/189-

    Impact of Systematic Errors in Sunyaev-Zel'dovich Surveys of Galaxy Clusters

    Full text link
    Future high-resolution microwave background measurements hold the promise of detecting galaxy clusters throughout our Hubble volume through their Sunyaev-Zel'dovich (SZ) signature, down to a given limiting flux. The number density of galaxy clusters is highly sensitive to cluster mass through fluctuations in the matter power spectrum, as well as redshift through the comoving volume and the growth factor. This sensitivity in principle allows tight constraints on such quantities as the equation of state of dark energy and the neutrino mass. We evaluate the ability of future cluster surveys to measure these quantities simultaneously when combined with PLANCK-like CMB data. Using a simple effective model for uncertainties in the cluster mass-SZ flux relation, we evaluate systematic shifts in cosmological constraints from cluster SZ surveys. We find that a systematic bias of 10% in cluster mass measurements can give rise to shifts in cosmological parameter estimates at levels larger than the 1σ1\sigma statistical errors. Systematic errors are unlikely to be detected from the mass and redshift dependence of cluster number counts alone; increasing survey size has only a marginal effect. Implications for upcoming experiments are discussed.Comment: 12 pages, 6 figures; accepted to JCAP; revised to match submitted versio

    Mass Models for Spiral Galaxies from 2-D Velocity Maps

    Full text link
    We model the mass distributions of 40 high surface brightness spiral galaxies inside their optical radii, deriving parameters of mass models by matching the predicted velocities to observed velocity maps. We use constant mass-to-light disk and bulge models, and we have tried fits with no halo and with three different halo density profiles. The data require a halo in most, but not all, cases, while in others the best fit occurs with negligible mass in the luminous component, which we regard as unphysical. All three adopted halo profiles lead to fits of about the same quality, and our data therefore do not constrain the functional form of the halo profile. The halo parameters display large degeneracies for two of the three adopted halo functions, but the separate luminous and dark masses are better constrained. However, the fitted disk and halo masses vary substantially between the adopted halo models, indicating that even high quality 2-D optical velocity maps do not provide significant constraints on the dark matter content of a galaxy. We demonstrate that data from longslit observations are likely to provide still weaker constraints. We conclude that additional information is needed in order to constrain the separate disk and halo masses in a galaxy.Comment: 41 pages, 13 figures, accepted for publication in A

    Production of Gravitational Waves in the nMSSM

    Full text link
    During a strongly first-order phase transition gravitational waves are produced by bubble collisions and turbulent plasma motion. We analyze the relevant characteristics of the electroweak phase transition in the nMSSM to determine the generated gravitational wave signal. Additionally, we comment on correlations between the production of gravitational waves and baryogenesis. We conclude that the gravitational wave relic density in this model is generically too small to be detected in the near future by the LISA experiment. We also consider the case of a "Standard Model" with dimension-six Higgs potential, which leads to a slightly stronger signal of gravitational waves.Comment: 29 pages, 7 figures; published version, some comments adde
    • 

    corecore